MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1 Structured version   Visualization version   Unicode version

Theorem dcubic1 24572
Description: Forward direction of dcubic 24573: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c  |-  ( ph  ->  P  e.  CC )
dcubic.d  |-  ( ph  ->  Q  e.  CC )
dcubic.x  |-  ( ph  ->  X  e.  CC )
dcubic.t  |-  ( ph  ->  T  e.  CC )
dcubic.3  |-  ( ph  ->  ( T ^ 3 )  =  ( G  -  N ) )
dcubic.g  |-  ( ph  ->  G  e.  CC )
dcubic.2  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  +  ( M ^
3 ) ) )
dcubic.m  |-  ( ph  ->  M  =  ( P  /  3 ) )
dcubic.n  |-  ( ph  ->  N  =  ( Q  /  2 ) )
dcubic.0  |-  ( ph  ->  T  =/=  0 )
dcubic1.x  |-  ( ph  ->  X  =  ( T  -  ( M  /  T ) ) )
Assertion
Ref Expression
dcubic1  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  0 )

Proof of Theorem dcubic1
StepHypRef Expression
1 dcubic.3 . . . . . . 7  |-  ( ph  ->  ( T ^ 3 )  =  ( G  -  N ) )
21oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( T ^
3 ) ^ 2 )  =  ( ( G  -  N ) ^ 2 ) )
3 dcubic.g . . . . . . 7  |-  ( ph  ->  G  e.  CC )
4 dcubic.n . . . . . . . 8  |-  ( ph  ->  N  =  ( Q  /  2 ) )
5 dcubic.d . . . . . . . . 9  |-  ( ph  ->  Q  e.  CC )
65halfcld 11277 . . . . . . . 8  |-  ( ph  ->  ( Q  /  2
)  e.  CC )
74, 6eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
8 binom2sub 12981 . . . . . . 7  |-  ( ( G  e.  CC  /\  N  e.  CC )  ->  ( ( G  -  N ) ^ 2 )  =  ( ( ( G ^ 2 )  -  ( 2  x.  ( G  x.  N ) ) )  +  ( N ^
2 ) ) )
93, 7, 8syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( G  -  N ) ^ 2 )  =  ( ( ( G ^ 2 )  -  ( 2  x.  ( G  x.  N ) ) )  +  ( N ^
2 ) ) )
10 dcubic.2 . . . . . . . 8  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  +  ( M ^
3 ) ) )
11 2cnd 11093 . . . . . . . . . 10  |-  ( ph  ->  2  e.  CC )
1211, 3, 7mul12d 10245 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( G  x.  N )
)  =  ( G  x.  ( 2  x.  N ) ) )
134oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  N
)  =  ( 2  x.  ( Q  / 
2 ) ) )
14 2ne0 11113 . . . . . . . . . . . . 13  |-  2  =/=  0
1514a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  =/=  0 )
165, 11, 15divcan2d 10803 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( Q  /  2 ) )  =  Q )
1713, 16eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  N
)  =  Q )
1817oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( G  x.  (
2  x.  N ) )  =  ( G  x.  Q ) )
193, 5mulcomd 10061 . . . . . . . . 9  |-  ( ph  ->  ( G  x.  Q
)  =  ( Q  x.  G ) )
2012, 18, 193eqtrd 2660 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( G  x.  N )
)  =  ( Q  x.  G ) )
2110, 20oveq12d 6668 . . . . . . 7  |-  ( ph  ->  ( ( G ^
2 )  -  (
2  x.  ( G  x.  N ) ) )  =  ( ( ( N ^ 2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) ) )
2221oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( G ^ 2 )  -  ( 2  x.  ( G  x.  N )
) )  +  ( N ^ 2 ) )  =  ( ( ( ( N ^
2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) )  +  ( N ^
2 ) ) )
232, 9, 223eqtrd 2660 . . . . 5  |-  ( ph  ->  ( ( T ^
3 ) ^ 2 )  =  ( ( ( ( N ^
2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) )  +  ( N ^
2 ) ) )
247sqcld 13006 . . . . . . 7  |-  ( ph  ->  ( N ^ 2 )  e.  CC )
25 dcubic.m . . . . . . . . 9  |-  ( ph  ->  M  =  ( P  /  3 ) )
26 dcubic.c . . . . . . . . . 10  |-  ( ph  ->  P  e.  CC )
27 3cn 11095 . . . . . . . . . . 11  |-  3  e.  CC
2827a1i 11 . . . . . . . . . 10  |-  ( ph  ->  3  e.  CC )
29 3ne0 11115 . . . . . . . . . . 11  |-  3  =/=  0
3029a1i 11 . . . . . . . . . 10  |-  ( ph  ->  3  =/=  0 )
3126, 28, 30divcld 10801 . . . . . . . . 9  |-  ( ph  ->  ( P  /  3
)  e.  CC )
3225, 31eqeltrd 2701 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
33 3nn0 11310 . . . . . . . 8  |-  3  e.  NN0
34 expcl 12878 . . . . . . . 8  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
3532, 33, 34sylancl 694 . . . . . . 7  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
3624, 35addcld 10059 . . . . . 6  |-  ( ph  ->  ( ( N ^
2 )  +  ( M ^ 3 ) )  e.  CC )
375, 3mulcld 10060 . . . . . 6  |-  ( ph  ->  ( Q  x.  G
)  e.  CC )
3836, 24, 37addsubd 10413 . . . . 5  |-  ( ph  ->  ( ( ( ( N ^ 2 )  +  ( M ^
3 ) )  +  ( N ^ 2 ) )  -  ( Q  x.  G )
)  =  ( ( ( ( N ^
2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) )  +  ( N ^
2 ) ) )
3924, 35, 24add32d 10263 . . . . . . 7  |-  ( ph  ->  ( ( ( N ^ 2 )  +  ( M ^ 3 ) )  +  ( N ^ 2 ) )  =  ( ( ( N ^ 2 )  +  ( N ^ 2 ) )  +  ( M ^
3 ) ) )
40242timesd 11275 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  =  ( ( N ^ 2 )  +  ( N ^ 2 ) ) )
4140oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) )  =  ( ( ( N ^ 2 )  +  ( N ^ 2 ) )  +  ( M ^
3 ) ) )
4239, 41eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( ( ( N ^ 2 )  +  ( M ^ 3 ) )  +  ( N ^ 2 ) )  =  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) )
4342oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( ( ( N ^ 2 )  +  ( M ^
3 ) )  +  ( N ^ 2 ) )  -  ( Q  x.  G )
)  =  ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) ) )
4423, 38, 433eqtr2d 2662 . . . 4  |-  ( ph  ->  ( ( T ^
3 ) ^ 2 )  =  ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) ) )
455, 3, 7subdid 10486 . . . . . . 7  |-  ( ph  ->  ( Q  x.  ( G  -  N )
)  =  ( ( Q  x.  G )  -  ( Q  x.  N ) ) )
461oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( Q  x.  ( T ^ 3 ) )  =  ( Q  x.  ( G  -  N
) ) )
477sqvald 13005 . . . . . . . . . 10  |-  ( ph  ->  ( N ^ 2 )  =  ( N  x.  N ) )
4847oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  =  ( 2  x.  ( N  x.  N
) ) )
4911, 7, 7mulassd 10063 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N )  x.  N
)  =  ( 2  x.  ( N  x.  N ) ) )
5017oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N )  x.  N
)  =  ( Q  x.  N ) )
5148, 49, 503eqtr2d 2662 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  =  ( Q  x.  N ) )
5251oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( ( Q  x.  G )  -  (
2  x.  ( N ^ 2 ) ) )  =  ( ( Q  x.  G )  -  ( Q  x.  N ) ) )
5345, 46, 523eqtr4d 2666 . . . . . 6  |-  ( ph  ->  ( Q  x.  ( T ^ 3 ) )  =  ( ( Q  x.  G )  -  ( 2  x.  ( N ^ 2 ) ) ) )
5453oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^ 3 ) )  =  ( ( ( Q  x.  G )  -  ( 2  x.  ( N ^ 2 ) ) )  -  ( M ^ 3 ) ) )
55 2cn 11091 . . . . . . 7  |-  2  e.  CC
56 mulcl 10020 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( N ^ 2 )  e.  CC )  -> 
( 2  x.  ( N ^ 2 ) )  e.  CC )
5755, 24, 56sylancr 695 . . . . . 6  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  e.  CC )
5837, 57, 35subsub4d 10423 . . . . 5  |-  ( ph  ->  ( ( ( Q  x.  G )  -  ( 2  x.  ( N ^ 2 ) ) )  -  ( M ^ 3 ) )  =  ( ( Q  x.  G )  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) ) ) )
5954, 58eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^ 3 ) )  =  ( ( Q  x.  G )  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) ) ) )
6044, 59oveq12d 6668 . . 3  |-  ( ph  ->  ( ( ( T ^ 3 ) ^
2 )  +  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^
3 ) ) )  =  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) )  +  ( ( Q  x.  G
)  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) ) ) )
6157, 35addcld 10059 . . . 4  |-  ( ph  ->  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) )  e.  CC )
62 npncan2 10308 . . . 4  |-  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) )  e.  CC  /\  ( Q  x.  G
)  e.  CC )  ->  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) )  +  ( ( Q  x.  G
)  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) ) )  =  0 )
6361, 37, 62syl2anc 693 . . 3  |-  ( ph  ->  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) )  +  ( ( Q  x.  G
)  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) ) )  =  0 )
6460, 63eqtrd 2656 . 2  |-  ( ph  ->  ( ( ( T ^ 3 ) ^
2 )  +  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 )
65 dcubic.x . . 3  |-  ( ph  ->  X  e.  CC )
66 dcubic.t . . 3  |-  ( ph  ->  T  e.  CC )
67 dcubic.0 . . 3  |-  ( ph  ->  T  =/=  0 )
68 dcubic1.x . . 3  |-  ( ph  ->  X  =  ( T  -  ( M  /  T ) ) )
6926, 5, 65, 66, 1, 3, 10, 25, 4, 67, 66, 67, 68dcubic1lem 24570 . 2  |-  ( ph  ->  ( ( ( X ^ 3 )  +  ( ( P  x.  X )  +  Q
) )  =  0  <-> 
( ( ( T ^ 3 ) ^
2 )  +  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 ) )
7064, 69mpbird 247 1  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   0cc0 9936    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   2c2 11070   3c3 11071   NN0cn0 11292   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  dcubic  24573
  Copyright terms: Public domain W3C validator