| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dcubic1 | Structured version Visualization version Unicode version | ||
| Description: Forward direction of dcubic 24573: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.) |
| Ref | Expression |
|---|---|
| dcubic.c |
|
| dcubic.d |
|
| dcubic.x |
|
| dcubic.t |
|
| dcubic.3 |
|
| dcubic.g |
|
| dcubic.2 |
|
| dcubic.m |
|
| dcubic.n |
|
| dcubic.0 |
|
| dcubic1.x |
|
| Ref | Expression |
|---|---|
| dcubic1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcubic.3 |
. . . . . . 7
| |
| 2 | 1 | oveq1d 6665 |
. . . . . 6
|
| 3 | dcubic.g |
. . . . . . 7
| |
| 4 | dcubic.n |
. . . . . . . 8
| |
| 5 | dcubic.d |
. . . . . . . . 9
| |
| 6 | 5 | halfcld 11277 |
. . . . . . . 8
|
| 7 | 4, 6 | eqeltrd 2701 |
. . . . . . 7
|
| 8 | binom2sub 12981 |
. . . . . . 7
| |
| 9 | 3, 7, 8 | syl2anc 693 |
. . . . . 6
|
| 10 | dcubic.2 |
. . . . . . . 8
| |
| 11 | 2cnd 11093 |
. . . . . . . . . 10
| |
| 12 | 11, 3, 7 | mul12d 10245 |
. . . . . . . . 9
|
| 13 | 4 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 14 | 2ne0 11113 |
. . . . . . . . . . . . 13
| |
| 15 | 14 | a1i 11 |
. . . . . . . . . . . 12
|
| 16 | 5, 11, 15 | divcan2d 10803 |
. . . . . . . . . . 11
|
| 17 | 13, 16 | eqtrd 2656 |
. . . . . . . . . 10
|
| 18 | 17 | oveq2d 6666 |
. . . . . . . . 9
|
| 19 | 3, 5 | mulcomd 10061 |
. . . . . . . . 9
|
| 20 | 12, 18, 19 | 3eqtrd 2660 |
. . . . . . . 8
|
| 21 | 10, 20 | oveq12d 6668 |
. . . . . . 7
|
| 22 | 21 | oveq1d 6665 |
. . . . . 6
|
| 23 | 2, 9, 22 | 3eqtrd 2660 |
. . . . 5
|
| 24 | 7 | sqcld 13006 |
. . . . . . 7
|
| 25 | dcubic.m |
. . . . . . . . 9
| |
| 26 | dcubic.c |
. . . . . . . . . 10
| |
| 27 | 3cn 11095 |
. . . . . . . . . . 11
| |
| 28 | 27 | a1i 11 |
. . . . . . . . . 10
|
| 29 | 3ne0 11115 |
. . . . . . . . . . 11
| |
| 30 | 29 | a1i 11 |
. . . . . . . . . 10
|
| 31 | 26, 28, 30 | divcld 10801 |
. . . . . . . . 9
|
| 32 | 25, 31 | eqeltrd 2701 |
. . . . . . . 8
|
| 33 | 3nn0 11310 |
. . . . . . . 8
| |
| 34 | expcl 12878 |
. . . . . . . 8
| |
| 35 | 32, 33, 34 | sylancl 694 |
. . . . . . 7
|
| 36 | 24, 35 | addcld 10059 |
. . . . . 6
|
| 37 | 5, 3 | mulcld 10060 |
. . . . . 6
|
| 38 | 36, 24, 37 | addsubd 10413 |
. . . . 5
|
| 39 | 24, 35, 24 | add32d 10263 |
. . . . . . 7
|
| 40 | 24 | 2timesd 11275 |
. . . . . . . 8
|
| 41 | 40 | oveq1d 6665 |
. . . . . . 7
|
| 42 | 39, 41 | eqtr4d 2659 |
. . . . . 6
|
| 43 | 42 | oveq1d 6665 |
. . . . 5
|
| 44 | 23, 38, 43 | 3eqtr2d 2662 |
. . . 4
|
| 45 | 5, 3, 7 | subdid 10486 |
. . . . . . 7
|
| 46 | 1 | oveq2d 6666 |
. . . . . . 7
|
| 47 | 7 | sqvald 13005 |
. . . . . . . . . 10
|
| 48 | 47 | oveq2d 6666 |
. . . . . . . . 9
|
| 49 | 11, 7, 7 | mulassd 10063 |
. . . . . . . . 9
|
| 50 | 17 | oveq1d 6665 |
. . . . . . . . 9
|
| 51 | 48, 49, 50 | 3eqtr2d 2662 |
. . . . . . . 8
|
| 52 | 51 | oveq2d 6666 |
. . . . . . 7
|
| 53 | 45, 46, 52 | 3eqtr4d 2666 |
. . . . . 6
|
| 54 | 53 | oveq1d 6665 |
. . . . 5
|
| 55 | 2cn 11091 |
. . . . . . 7
| |
| 56 | mulcl 10020 |
. . . . . . 7
| |
| 57 | 55, 24, 56 | sylancr 695 |
. . . . . 6
|
| 58 | 37, 57, 35 | subsub4d 10423 |
. . . . 5
|
| 59 | 54, 58 | eqtrd 2656 |
. . . 4
|
| 60 | 44, 59 | oveq12d 6668 |
. . 3
|
| 61 | 57, 35 | addcld 10059 |
. . . 4
|
| 62 | npncan2 10308 |
. . . 4
| |
| 63 | 61, 37, 62 | syl2anc 693 |
. . 3
|
| 64 | 60, 63 | eqtrd 2656 |
. 2
|
| 65 | dcubic.x |
. . 3
| |
| 66 | dcubic.t |
. . 3
| |
| 67 | dcubic.0 |
. . 3
| |
| 68 | dcubic1.x |
. . 3
| |
| 69 | 26, 5, 65, 66, 1, 3, 10, 25, 4, 67, 66, 67, 68 | dcubic1lem 24570 |
. 2
|
| 70 | 64, 69 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 |
| This theorem is referenced by: dcubic 24573 |
| Copyright terms: Public domain | W3C validator |