MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1lem Structured version   Visualization version   Unicode version

Theorem dcubic1lem 24570
Description: Lemma for dcubic1 24572 and dcubic2 24571: simplify the cubic equation under the substitution  X  =  U  -  M  /  U. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c  |-  ( ph  ->  P  e.  CC )
dcubic.d  |-  ( ph  ->  Q  e.  CC )
dcubic.x  |-  ( ph  ->  X  e.  CC )
dcubic.t  |-  ( ph  ->  T  e.  CC )
dcubic.3  |-  ( ph  ->  ( T ^ 3 )  =  ( G  -  N ) )
dcubic.g  |-  ( ph  ->  G  e.  CC )
dcubic.2  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  +  ( M ^
3 ) ) )
dcubic.m  |-  ( ph  ->  M  =  ( P  /  3 ) )
dcubic.n  |-  ( ph  ->  N  =  ( Q  /  2 ) )
dcubic.0  |-  ( ph  ->  T  =/=  0 )
dcubic2.u  |-  ( ph  ->  U  e.  CC )
dcubic2.z  |-  ( ph  ->  U  =/=  0 )
dcubic2.2  |-  ( ph  ->  X  =  ( U  -  ( M  /  U ) ) )
Assertion
Ref Expression
dcubic1lem  |-  ( ph  ->  ( ( ( X ^ 3 )  +  ( ( P  x.  X )  +  Q
) )  =  0  <-> 
( ( ( U ^ 3 ) ^
2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 ) )

Proof of Theorem dcubic1lem
StepHypRef Expression
1 dcubic2.u . . . . . . . . 9  |-  ( ph  ->  U  e.  CC )
2 3nn0 11310 . . . . . . . . 9  |-  3  e.  NN0
3 expcl 12878 . . . . . . . . 9  |-  ( ( U  e.  CC  /\  3  e.  NN0 )  -> 
( U ^ 3 )  e.  CC )
41, 2, 3sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( U ^ 3 )  e.  CC )
54sqvald 13005 . . . . . . 7  |-  ( ph  ->  ( ( U ^
3 ) ^ 2 )  =  ( ( U ^ 3 )  x.  ( U ^
3 ) ) )
65oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( U ^ 3 ) ^
2 )  /  ( U ^ 3 ) )  =  ( ( ( U ^ 3 )  x.  ( U ^
3 ) )  / 
( U ^ 3 ) ) )
7 dcubic2.z . . . . . . . 8  |-  ( ph  ->  U  =/=  0 )
8 3z 11410 . . . . . . . . 9  |-  3  e.  ZZ
98a1i 11 . . . . . . . 8  |-  ( ph  ->  3  e.  ZZ )
101, 7, 9expne0d 13014 . . . . . . 7  |-  ( ph  ->  ( U ^ 3 )  =/=  0 )
114, 4, 10divcan4d 10807 . . . . . 6  |-  ( ph  ->  ( ( ( U ^ 3 )  x.  ( U ^ 3 ) )  /  ( U ^ 3 ) )  =  ( U ^
3 ) )
126, 11eqtr2d 2657 . . . . 5  |-  ( ph  ->  ( U ^ 3 )  =  ( ( ( U ^ 3 ) ^ 2 )  /  ( U ^
3 ) ) )
13 dcubic.d . . . . . . . 8  |-  ( ph  ->  Q  e.  CC )
14 dcubic.m . . . . . . . . . . 11  |-  ( ph  ->  M  =  ( P  /  3 ) )
15 dcubic.c . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  CC )
16 3cn 11095 . . . . . . . . . . . . 13  |-  3  e.  CC
1716a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  3  e.  CC )
18 3ne0 11115 . . . . . . . . . . . . 13  |-  3  =/=  0
1918a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  3  =/=  0 )
2015, 17, 19divcld 10801 . . . . . . . . . . 11  |-  ( ph  ->  ( P  /  3
)  e.  CC )
2114, 20eqeltrd 2701 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
22 expcl 12878 . . . . . . . . . 10  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
2321, 2, 22sylancl 694 . . . . . . . . 9  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
2423, 4, 10divcld 10801 . . . . . . . 8  |-  ( ph  ->  ( ( M ^
3 )  /  ( U ^ 3 ) )  e.  CC )
2513, 24negsubd 10398 . . . . . . 7  |-  ( ph  ->  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )  =  ( Q  -  ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )
2613, 4, 10divcan4d 10807 . . . . . . . 8  |-  ( ph  ->  ( ( Q  x.  ( U ^ 3 ) )  /  ( U ^ 3 ) )  =  Q )
2726oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( ( Q  x.  ( U ^
3 ) )  / 
( U ^ 3 ) )  -  (
( M ^ 3 )  /  ( U ^ 3 ) ) )  =  ( Q  -  ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )
2825, 27eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )  =  ( ( ( Q  x.  ( U ^ 3 ) )  /  ( U ^
3 ) )  -  ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )
29 dcubic.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  CC )
3015, 29mulcld 10060 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  X
)  e.  CC )
3130negcld 10379 . . . . . . . 8  |-  ( ph  -> 
-u ( P  x.  X )  e.  CC )
3224negcld 10379 . . . . . . . 8  |-  ( ph  -> 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) )  e.  CC )
3331, 32, 30, 13add42d 10265 . . . . . . 7  |-  ( ph  ->  ( ( -u ( P  x.  X )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) )  +  ( ( P  x.  X )  +  Q
) )  =  ( ( -u ( P  x.  X )  +  ( P  x.  X
) )  +  ( Q  +  -u (
( M ^ 3 )  /  ( U ^ 3 ) ) ) ) )
3415, 29mulneg2d 10484 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  -u X
)  =  -u ( P  x.  X )
)
35 dcubic2.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  =  ( U  -  ( M  /  U ) ) )
3635negeqd 10275 . . . . . . . . . . . . . 14  |-  ( ph  -> 
-u X  =  -u ( U  -  ( M  /  U ) ) )
3721, 1, 7divcld 10801 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  /  U
)  e.  CC )
381, 37negsubdid 10407 . . . . . . . . . . . . . 14  |-  ( ph  -> 
-u ( U  -  ( M  /  U
) )  =  (
-u U  +  ( M  /  U ) ) )
3936, 38eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ph  -> 
-u X  =  (
-u U  +  ( M  /  U ) ) )
4039oveq2d 6666 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  -u X
)  =  ( P  x.  ( -u U  +  ( M  /  U ) ) ) )
4134, 40eqtr3d 2658 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( P  x.  X )  =  ( P  x.  ( -u U  +  ( M  /  U ) ) ) )
421negcld 10379 . . . . . . . . . . . 12  |-  ( ph  -> 
-u U  e.  CC )
4315, 42, 37adddid 10064 . . . . . . . . . . 11  |-  ( ph  ->  ( P  x.  ( -u U  +  ( M  /  U ) ) )  =  ( ( P  x.  -u U
)  +  ( P  x.  ( M  /  U ) ) ) )
4415, 1mulneg2d 10484 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  -u U
)  =  -u ( P  x.  U )
)
4544oveq1d 6665 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  x.  -u U )  +  ( P  x.  ( M  /  U ) ) )  =  ( -u ( P  x.  U
)  +  ( P  x.  ( M  /  U ) ) ) )
4641, 43, 453eqtrd 2660 . . . . . . . . . 10  |-  ( ph  -> 
-u ( P  x.  X )  =  (
-u ( P  x.  U )  +  ( P  x.  ( M  /  U ) ) ) )
4746oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( -u ( P  x.  X )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) )  =  ( ( -u ( P  x.  U )  +  ( P  x.  ( M  /  U
) ) )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )
4815, 1mulcld 10060 . . . . . . . . . . 11  |-  ( ph  ->  ( P  x.  U
)  e.  CC )
4948negcld 10379 . . . . . . . . . 10  |-  ( ph  -> 
-u ( P  x.  U )  e.  CC )
5015, 37mulcld 10060 . . . . . . . . . 10  |-  ( ph  ->  ( P  x.  ( M  /  U ) )  e.  CC )
5149, 50, 32addassd 10062 . . . . . . . . 9  |-  ( ph  ->  ( ( -u ( P  x.  U )  +  ( P  x.  ( M  /  U
) ) )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) )  =  ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) ) )
5247, 51eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( -u ( P  x.  X )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) )  =  ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) ) )
5352oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( -u ( P  x.  X )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) )  +  ( ( P  x.  X )  +  Q
) )  =  ( ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  +  ( ( P  x.  X
)  +  Q ) ) )
5431, 30addcomd 10238 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( P  x.  X )  +  ( P  x.  X
) )  =  ( ( P  x.  X
)  +  -u ( P  x.  X )
) )
5530negidd 10382 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  x.  X )  +  -u ( P  x.  X
) )  =  0 )
5654, 55eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( -u ( P  x.  X )  +  ( P  x.  X
) )  =  0 )
5756oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( -u ( P  x.  X )  +  ( P  x.  X ) )  +  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  =  ( 0  +  ( Q  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) ) )
5813, 32addcld 10059 . . . . . . . . 9  |-  ( ph  ->  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )  e.  CC )
5958addid2d 10237 . . . . . . . 8  |-  ( ph  ->  ( 0  +  ( Q  +  -u (
( M ^ 3 )  /  ( U ^ 3 ) ) ) )  =  ( Q  +  -u (
( M ^ 3 )  /  ( U ^ 3 ) ) ) )
6057, 59eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( -u ( P  x.  X )  +  ( P  x.  X ) )  +  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  =  ( Q  +  -u (
( M ^ 3 )  /  ( U ^ 3 ) ) ) )
6133, 53, 603eqtr3d 2664 . . . . . 6  |-  ( ph  ->  ( ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U ) )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )  +  ( ( P  x.  X )  +  Q ) )  =  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )
6213, 4mulcld 10060 . . . . . . 7  |-  ( ph  ->  ( Q  x.  ( U ^ 3 ) )  e.  CC )
6362, 23, 4, 10divsubdird 10840 . . . . . 6  |-  ( ph  ->  ( ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) )  /  ( U ^ 3 ) )  =  ( ( ( Q  x.  ( U ^ 3 ) )  /  ( U ^
3 ) )  -  ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )
6428, 61, 633eqtr4d 2666 . . . . 5  |-  ( ph  ->  ( ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U ) )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )  +  ( ( P  x.  X )  +  Q ) )  =  ( ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) )  /  ( U ^ 3 ) ) )
6512, 64oveq12d 6668 . . . 4  |-  ( ph  ->  ( ( U ^
3 )  +  ( ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  +  ( ( P  x.  X
)  +  Q ) ) )  =  ( ( ( ( U ^ 3 ) ^
2 )  /  ( U ^ 3 ) )  +  ( ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) )  / 
( U ^ 3 ) ) ) )
661, 37negsubd 10398 . . . . . . . . . 10  |-  ( ph  ->  ( U  +  -u ( M  /  U
) )  =  ( U  -  ( M  /  U ) ) )
6735, 66eqtr4d 2659 . . . . . . . . 9  |-  ( ph  ->  X  =  ( U  +  -u ( M  /  U ) ) )
6867oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( X ^ 3 )  =  ( ( U  +  -u ( M  /  U ) ) ^ 3 ) )
6937negcld 10379 . . . . . . . . 9  |-  ( ph  -> 
-u ( M  /  U )  e.  CC )
70 binom3 12985 . . . . . . . . 9  |-  ( ( U  e.  CC  /\  -u ( M  /  U
)  e.  CC )  ->  ( ( U  +  -u ( M  /  U ) ) ^
3 )  =  ( ( ( U ^
3 )  +  ( 3  x.  ( ( U ^ 2 )  x.  -u ( M  /  U ) ) ) )  +  ( ( 3  x.  ( U  x.  ( -u ( M  /  U ) ^
2 ) ) )  +  ( -u ( M  /  U ) ^
3 ) ) ) )
711, 69, 70syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( U  +  -u ( M  /  U
) ) ^ 3 )  =  ( ( ( U ^ 3 )  +  ( 3  x.  ( ( U ^ 2 )  x.  -u ( M  /  U
) ) ) )  +  ( ( 3  x.  ( U  x.  ( -u ( M  /  U ) ^ 2 ) ) )  +  ( -u ( M  /  U ) ^
3 ) ) ) )
721sqcld 13006 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U ^ 2 )  e.  CC )
7372, 37mulneg2d 10484 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( U ^
2 )  x.  -u ( M  /  U ) )  =  -u ( ( U ^ 2 )  x.  ( M  /  U
) ) )
7472, 21, 1, 7div12d 10837 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( U ^
2 )  x.  ( M  /  U ) )  =  ( M  x.  ( ( U ^
2 )  /  U
) ) )
751sqvald 13005 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U ^ 2 )  =  ( U  x.  U ) )
7675oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( U ^
2 )  /  U
)  =  ( ( U  x.  U )  /  U ) )
771, 1, 7divcan4d 10807 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( U  x.  U )  /  U
)  =  U )
7876, 77eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( U ^
2 )  /  U
)  =  U )
7978oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  x.  (
( U ^ 2 )  /  U ) )  =  ( M  x.  U ) )
8074, 79eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( U ^
2 )  x.  ( M  /  U ) )  =  ( M  x.  U ) )
8180negeqd 10275 . . . . . . . . . . . . 13  |-  ( ph  -> 
-u ( ( U ^ 2 )  x.  ( M  /  U
) )  =  -u ( M  x.  U
) )
8273, 81eqtrd 2656 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( U ^
2 )  x.  -u ( M  /  U ) )  =  -u ( M  x.  U ) )
8382oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( 3  x.  (
( U ^ 2 )  x.  -u ( M  /  U ) ) )  =  ( 3  x.  -u ( M  x.  U ) ) )
8421, 1mulcld 10060 . . . . . . . . . . . 12  |-  ( ph  ->  ( M  x.  U
)  e.  CC )
8517, 84mulneg2d 10484 . . . . . . . . . . 11  |-  ( ph  ->  ( 3  x.  -u ( M  x.  U )
)  =  -u (
3  x.  ( M  x.  U ) ) )
8617, 21, 1mulassd 10063 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 3  x.  M )  x.  U
)  =  ( 3  x.  ( M  x.  U ) ) )
8714oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 3  x.  M
)  =  ( 3  x.  ( P  / 
3 ) ) )
8815, 17, 19divcan2d 10803 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 3  x.  ( P  /  3 ) )  =  P )
8987, 88eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  M
)  =  P )
9089oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 3  x.  M )  x.  U
)  =  ( P  x.  U ) )
9186, 90eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ph  ->  ( 3  x.  ( M  x.  U )
)  =  ( P  x.  U ) )
9291negeqd 10275 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( 3  x.  ( M  x.  U
) )  =  -u ( P  x.  U
) )
9383, 85, 923eqtrd 2660 . . . . . . . . . 10  |-  ( ph  ->  ( 3  x.  (
( U ^ 2 )  x.  -u ( M  /  U ) ) )  =  -u ( P  x.  U )
)
9493oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( ( U ^
3 )  +  ( 3  x.  ( ( U ^ 2 )  x.  -u ( M  /  U ) ) ) )  =  ( ( U ^ 3 )  +  -u ( P  x.  U ) ) )
95 sqneg 12923 . . . . . . . . . . . . . . . 16  |-  ( ( M  /  U )  e.  CC  ->  ( -u ( M  /  U
) ^ 2 )  =  ( ( M  /  U ) ^
2 ) )
9637, 95syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( -u ( M  /  U ) ^
2 )  =  ( ( M  /  U
) ^ 2 ) )
9737sqvald 13005 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( M  /  U ) ^ 2 )  =  ( ( M  /  U )  x.  ( M  /  U ) ) )
9896, 97eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -u ( M  /  U ) ^
2 )  =  ( ( M  /  U
)  x.  ( M  /  U ) ) )
9998oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  x.  ( -u ( M  /  U
) ^ 2 ) )  =  ( U  x.  ( ( M  /  U )  x.  ( M  /  U
) ) ) )
1001, 37, 37mulassd 10063 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( U  x.  ( M  /  U
) )  x.  ( M  /  U ) )  =  ( U  x.  ( ( M  /  U )  x.  ( M  /  U ) ) ) )
10121, 1, 7divcan2d 10803 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U  x.  ( M  /  U ) )  =  M )
102101oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( U  x.  ( M  /  U
) )  x.  ( M  /  U ) )  =  ( M  x.  ( M  /  U
) ) )
10399, 100, 1023eqtr2d 2662 . . . . . . . . . . . 12  |-  ( ph  ->  ( U  x.  ( -u ( M  /  U
) ^ 2 ) )  =  ( M  x.  ( M  /  U ) ) )
104103oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( 3  x.  ( U  x.  ( -u ( M  /  U ) ^
2 ) ) )  =  ( 3  x.  ( M  x.  ( M  /  U ) ) ) )
10517, 21, 37mulassd 10063 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 3  x.  M )  x.  ( M  /  U ) )  =  ( 3  x.  ( M  x.  ( M  /  U ) ) ) )
10689oveq1d 6665 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 3  x.  M )  x.  ( M  /  U ) )  =  ( P  x.  ( M  /  U
) ) )
107104, 105, 1063eqtr2d 2662 . . . . . . . . . 10  |-  ( ph  ->  ( 3  x.  ( U  x.  ( -u ( M  /  U ) ^
2 ) ) )  =  ( P  x.  ( M  /  U
) ) )
108 3nn 11186 . . . . . . . . . . . . 13  |-  3  e.  NN
109108a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  3  e.  NN )
110 2nn 11185 . . . . . . . . . . . . . 14  |-  2  e.  NN
111 1nn0 11308 . . . . . . . . . . . . . 14  |-  1  e.  NN0
112 1nn 11031 . . . . . . . . . . . . . 14  |-  1  e.  NN
113 2t1e2 11176 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  1 )  =  2
114113oveq1i 6660 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  1 )  +  1 )  =  ( 2  +  1 )
115 2p1e3 11151 . . . . . . . . . . . . . . 15  |-  ( 2  +  1 )  =  3
116114, 115eqtri 2644 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  1 )  +  1 )  =  3
117 1lt2 11194 . . . . . . . . . . . . . 14  |-  1  <  2
118110, 111, 112, 116, 117ndvdsi 15136 . . . . . . . . . . . . 13  |-  -.  2  ||  3
119118a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  -.  2  ||  3
)
120 oexpneg 15069 . . . . . . . . . . . 12  |-  ( ( ( M  /  U
)  e.  CC  /\  3  e.  NN  /\  -.  2  ||  3 )  -> 
( -u ( M  /  U ) ^ 3 )  =  -u (
( M  /  U
) ^ 3 ) )
12137, 109, 119, 120syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  ( -u ( M  /  U ) ^
3 )  =  -u ( ( M  /  U ) ^ 3 ) )
1222a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  3  e.  NN0 )
12321, 1, 7, 122expdivd 13022 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  /  U ) ^ 3 )  =  ( ( M ^ 3 )  /  ( U ^
3 ) ) )
124123negeqd 10275 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( M  /  U ) ^
3 )  =  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )
125121, 124eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( M  /  U ) ^
3 )  =  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )
126107, 125oveq12d 6668 . . . . . . . . 9  |-  ( ph  ->  ( ( 3  x.  ( U  x.  ( -u ( M  /  U
) ^ 2 ) ) )  +  (
-u ( M  /  U ) ^ 3 ) )  =  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )
12794, 126oveq12d 6668 . . . . . . . 8  |-  ( ph  ->  ( ( ( U ^ 3 )  +  ( 3  x.  (
( U ^ 2 )  x.  -u ( M  /  U ) ) ) )  +  ( ( 3  x.  ( U  x.  ( -u ( M  /  U ) ^
2 ) ) )  +  ( -u ( M  /  U ) ^
3 ) ) )  =  ( ( ( U ^ 3 )  +  -u ( P  x.  U ) )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) ) )
12868, 71, 1273eqtrd 2660 . . . . . . 7  |-  ( ph  ->  ( X ^ 3 )  =  ( ( ( U ^ 3 )  +  -u ( P  x.  U )
)  +  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) ) )
12950, 32addcld 10059 . . . . . . . 8  |-  ( ph  ->  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )  e.  CC )
1304, 49, 129addassd 10062 . . . . . . 7  |-  ( ph  ->  ( ( ( U ^ 3 )  + 
-u ( P  x.  U ) )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  =  ( ( U ^ 3 )  +  ( -u ( P  x.  U
)  +  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) ) ) )
131128, 130eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( X ^ 3 )  =  ( ( U ^ 3 )  +  ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U ) )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) ) ) )
132131oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  ( ( ( U ^ 3 )  +  ( -u ( P  x.  U
)  +  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) ) )  +  ( ( P  x.  X )  +  Q ) ) )
13349, 129addcld 10059 . . . . . 6  |-  ( ph  ->  ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  e.  CC )
13430, 13addcld 10059 . . . . . 6  |-  ( ph  ->  ( ( P  x.  X )  +  Q
)  e.  CC )
1354, 133, 134addassd 10062 . . . . 5  |-  ( ph  ->  ( ( ( U ^ 3 )  +  ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) ) )  +  ( ( P  x.  X )  +  Q
) )  =  ( ( U ^ 3 )  +  ( (
-u ( P  x.  U )  +  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )  +  ( ( P  x.  X )  +  Q ) ) ) )
136132, 135eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  ( ( U ^ 3 )  +  ( ( -u ( P  x.  U
)  +  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )  +  ( ( P  x.  X )  +  Q ) ) ) )
1374sqcld 13006 . . . . 5  |-  ( ph  ->  ( ( U ^
3 ) ^ 2 )  e.  CC )
13862, 23subcld 10392 . . . . 5  |-  ( ph  ->  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^ 3 ) )  e.  CC )
139137, 138, 4, 10divdird 10839 . . . 4  |-  ( ph  ->  ( ( ( ( U ^ 3 ) ^ 2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^ 3 ) ) )  /  ( U ^ 3 ) )  =  ( ( ( ( U ^ 3 ) ^ 2 )  /  ( U ^
3 ) )  +  ( ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) )  /  ( U ^ 3 ) ) ) )
14065, 136, 1393eqtr4d 2666 . . 3  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  ( ( ( ( U ^
3 ) ^ 2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) ) )  /  ( U ^
3 ) ) )
141140eqeq1d 2624 . 2  |-  ( ph  ->  ( ( ( X ^ 3 )  +  ( ( P  x.  X )  +  Q
) )  =  0  <-> 
( ( ( ( U ^ 3 ) ^ 2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^ 3 ) ) )  /  ( U ^ 3 ) )  =  0 ) )
142137, 138addcld 10059 . . 3  |-  ( ph  ->  ( ( ( U ^ 3 ) ^
2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) ) )  e.  CC )
143142, 4, 10diveq0ad 10811 . 2  |-  ( ph  ->  ( ( ( ( ( U ^ 3 ) ^ 2 )  +  ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) ) )  /  ( U ^ 3 ) )  =  0  <->  ( (
( U ^ 3 ) ^ 2 )  +  ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) ) )  =  0 ) )
144141, 143bitrd 268 1  |-  ( ph  ->  ( ( ( X ^ 3 )  +  ( ( P  x.  X )  +  Q
) )  =  0  <-> 
( ( ( U ^ 3 ) ^
2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   ZZcz 11377   ^cexp 12860    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  dcubic2  24571  dcubic1  24572
  Copyright terms: Public domain W3C validator