MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulcr Structured version   Visualization version   Unicode version

Theorem dvdsmulcr 15011
Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulcr  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  <->  M 
||  N ) )

Proof of Theorem dvdsmulcr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 zmulcl 11426 . . . . . 6  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  x.  K
)  e.  ZZ )
213adant2 1080 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  x.  K )  e.  ZZ )
3 zmulcl 11426 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  x.  K
)  e.  ZZ )
433adant1 1079 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  x.  K )  e.  ZZ )
52, 4jca 554 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  x.  K
)  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
653adant3r 1323 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
7 3simpa 1058 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  e.  ZZ  /\  N  e.  ZZ ) )
8 simpr 477 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
9 zcn 11382 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
10 zcn 11382 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
119, 10anim12i 590 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( x  e.  CC  /\  M  e.  CC ) )
12 zcn 11382 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
13 zcn 11382 . . . . . . . . . . . 12  |-  ( K  e.  ZZ  ->  K  e.  CC )
1413anim1i 592 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  K  =/=  0 )  -> 
( K  e.  CC  /\  K  =/=  0 ) )
15 mulass 10024 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  M  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  M
)  x.  K )  =  ( x  x.  ( M  x.  K
) ) )
16153expa 1265 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  K  e.  CC )  ->  ( ( x  x.  M )  x.  K )  =  ( x  x.  ( M  x.  K ) ) )
1716adantrr 753 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( ( x  x.  M )  x.  K
)  =  ( x  x.  ( M  x.  K ) ) )
18173adant2 1080 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
x  x.  M )  x.  K )  =  ( x  x.  ( M  x.  K )
) )
1918eqeq1d 2624 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
( x  x.  M
)  x.  K )  =  ( N  x.  K )  <->  ( x  x.  ( M  x.  K
) )  =  ( N  x.  K ) ) )
20 mulcl 10020 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( x  x.  M
)  e.  CC )
21 mulcan2 10665 . . . . . . . . . . . . 13  |-  ( ( ( x  x.  M
)  e.  CC  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( ( ( x  x.  M )  x.  K )  =  ( N  x.  K )  <-> 
( x  x.  M
)  =  N ) )
2220, 21syl3an1 1359 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
( x  x.  M
)  x.  K )  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
2319, 22bitr3d 270 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
x  x.  ( M  x.  K ) )  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
2411, 12, 14, 23syl3an 1368 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
x  x.  ( M  x.  K ) )  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
25243expb 1266 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  ( ( x  x.  ( M  x.  K ) )  =  ( N  x.  K
)  <->  ( x  x.  M )  =  N ) )
26253impa 1259 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  ( ( x  x.  ( M  x.  K ) )  =  ( N  x.  K
)  <->  ( x  x.  M )  =  N ) )
27263coml 1272 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
28273expia 1267 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  (
x  e.  ZZ  ->  ( ( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) ) )
29283impb 1260 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( x  e.  ZZ  ->  ( ( x  x.  ( M  x.  K
) )  =  ( N  x.  K )  <-> 
( x  x.  M
)  =  N ) ) )
3029imp 445 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
3130biimpd 219 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  -> 
( x  x.  M
)  =  N ) )
326, 7, 8, 31dvds1lem 14993 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  ->  M  ||  N ) )
33 dvdsmulc 15009 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K
) ) )
34333adant3r 1323 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  ||  N  ->  ( M  x.  K
)  ||  ( N  x.  K ) ) )
3532, 34impbid 202 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  <->  M 
||  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941   ZZcz 11377    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-dvds 14984
This theorem is referenced by:  mulgcddvds  15369  prmpwdvds  15608  4sqlem10  15651  sylow3lem4  18045  odadd1  18251  odadd2  18252  ablfacrp2  18466  ablfac1eu  18472  fsumdvdsdiaglem  24909  nn0prpwlem  32317  jm2.20nn  37564  etransclem38  40489
  Copyright terms: Public domain W3C validator