| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdscmulr | Structured version Visualization version Unicode version | ||
| Description: Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdscmulr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmulcl 11426 |
. . . . . . 7
| |
| 2 | 1 | 3adant3 1081 |
. . . . . 6
|
| 3 | zmulcl 11426 |
. . . . . . 7
| |
| 4 | 3 | 3adant2 1080 |
. . . . . 6
|
| 5 | 2, 4 | jca 554 |
. . . . 5
|
| 6 | 5 | 3coml 1272 |
. . . 4
|
| 7 | 6 | 3adant3r 1323 |
. . 3
|
| 8 | 3simpa 1058 |
. . 3
| |
| 9 | simpr 477 |
. . 3
| |
| 10 | zcn 11382 |
. . . . . . . . . . . 12
| |
| 11 | zcn 11382 |
. . . . . . . . . . . 12
| |
| 12 | 10, 11 | anim12i 590 |
. . . . . . . . . . 11
|
| 13 | zcn 11382 |
. . . . . . . . . . 11
| |
| 14 | zcn 11382 |
. . . . . . . . . . . 12
| |
| 15 | 14 | anim1i 592 |
. . . . . . . . . . 11
|
| 16 | mul12 10202 |
. . . . . . . . . . . . . . . . 17
| |
| 17 | 16 | 3adant1r 1319 |
. . . . . . . . . . . . . . . 16
|
| 18 | 17 | 3expb 1266 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | ancoms 469 |
. . . . . . . . . . . . . 14
|
| 20 | 19 | 3adant2 1080 |
. . . . . . . . . . . . 13
|
| 21 | 20 | eqeq1d 2624 |
. . . . . . . . . . . 12
|
| 22 | mulcl 10020 |
. . . . . . . . . . . . 13
| |
| 23 | mulcan 10664 |
. . . . . . . . . . . . 13
| |
| 24 | 22, 23 | syl3an1 1359 |
. . . . . . . . . . . 12
|
| 25 | 21, 24 | bitr3d 270 |
. . . . . . . . . . 11
|
| 26 | 12, 13, 15, 25 | syl3an 1368 |
. . . . . . . . . 10
|
| 27 | 26 | 3expb 1266 |
. . . . . . . . 9
|
| 28 | 27 | 3impa 1259 |
. . . . . . . 8
|
| 29 | 28 | 3coml 1272 |
. . . . . . 7
|
| 30 | 29 | 3expia 1267 |
. . . . . 6
|
| 31 | 30 | 3impb 1260 |
. . . . 5
|
| 32 | 31 | imp 445 |
. . . 4
|
| 33 | 32 | biimpd 219 |
. . 3
|
| 34 | 7, 8, 9, 33 | dvds1lem 14993 |
. 2
|
| 35 | dvdscmul 15008 |
. . 3
| |
| 36 | 35 | 3adant3r 1323 |
. 2
|
| 37 | 34, 36 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-dvds 14984 |
| This theorem is referenced by: modmulconst 15013 bitsmod 15158 mulgcd 15265 pcpremul 15548 4sqlem17 15665 odmulg 17973 ablfacrp2 18466 ablfac1b 18469 pgpfac1lem3a 18475 znrrg 19914 fsumdvdsdiaglem 24909 oddpwdc 30416 jm2.20nn 37564 |
| Copyright terms: Public domain | W3C validator |