MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem10 Structured version   Visualization version   Unicode version

Theorem 4sqlem10 15651
Description: Lemma for 4sq 15668. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sqlem10.5  |-  ( (
ph  /\  ps )  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( B ^ 2 ) )  =  0 )
Assertion
Ref Expression
4sqlem10  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.2 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ZZ )
21adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  A  e.  ZZ )
3 4sqlem5.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  NN )
43adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  M  e.  NN )
54nnred 11035 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  M  e.  RR )
65rehalfcld 11279 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  RR )
76recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  CC )
87negnegd 10383 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  -> 
-u -u ( M  / 
2 )  =  ( M  /  2 ) )
9 4sqlem5.4 . . . . . . . . . . . . . . . . . . . 20  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
101, 3, 94sqlem5 15646 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
1110adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
1211simpld 475 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ps )  ->  B  e.  ZZ )
1312zred 11482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ps )  ->  B  e.  RR )
141, 3, 94sqlem6 15647 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
1514adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ps )  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
1615simprd 479 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ps )  ->  B  <  ( M  /  2 ) )
1713, 16ltned 10173 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  B  =/=  ( M  /  2 ) )
1817neneqd 2799 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  -.  B  =  ( M  /  2 ) )
19 2cnd 11093 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ps )  ->  2  e.  CC )
2019sqvald 13005 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ps )  ->  ( 2 ^ 2 )  =  ( 2  x.  2 ) )
2120oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  ->  ( ( M ^
2 )  /  (
2 ^ 2 ) )  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
224nncnd 11036 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ps )  ->  M  e.  CC )
23 2ne0 11113 . . . . . . . . . . . . . . . . . . . 20  |-  2  =/=  0
2423a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ps )  ->  2  =/=  0 )
2522, 19, 24sqdivd 13021 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( M ^ 2 )  /  ( 2 ^ 2 ) ) )
2622sqcld 13006 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  e.  CC )
2726, 19, 19, 24, 24divdiv1d 10832 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
2821, 25, 273eqtr4d 2666 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( ( M ^ 2 )  /  2 )  /  2 ) )
2926halfcld 11277 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ps )  ->  ( ( M ^
2 )  /  2
)  e.  CC )
3029halfcld 11277 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  CC )
3112zcnd 11483 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ps )  ->  B  e.  CC )
3231sqcld 13006 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  ->  ( B ^ 2 )  e.  CC )
33 4sqlem10.5 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( B ^ 2 ) )  =  0 )
3430, 32, 33subeq0d 10400 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  =  ( B ^ 2 ) )
3528, 34eqtr2d 2657 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ps )  ->  ( B ^ 2 )  =  ( ( M  /  2 ) ^ 2 ) )
36 sqeqor 12978 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  CC  /\  ( M  /  2
)  e.  CC )  ->  ( ( B ^ 2 )  =  ( ( M  / 
2 ) ^ 2 )  <->  ( B  =  ( M  /  2
)  \/  B  = 
-u ( M  / 
2 ) ) ) )
3731, 7, 36syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ps )  ->  ( ( B ^
2 )  =  ( ( M  /  2
) ^ 2 )  <-> 
( B  =  ( M  /  2 )  \/  B  =  -u ( M  /  2
) ) ) )
3835, 37mpbid 222 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  ( B  =  ( M  /  2 )  \/  B  =  -u ( M  /  2
) ) )
3938ord 392 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( -.  B  =  ( M  /  2
)  ->  B  =  -u ( M  /  2
) ) )
4018, 39mpd 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  B  =  -u ( M  /  2 ) )
4140, 12eqeltrrd 2702 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  -> 
-u ( M  / 
2 )  e.  ZZ )
4241znegcld 11484 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  -> 
-u -u ( M  / 
2 )  e.  ZZ )
438, 42eqeltrrd 2702 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  ZZ )
442, 43zaddcld 11486 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  ZZ )
4544zred 11482 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  RR )
464nnrpd 11870 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  M  e.  RR+ )
4745, 46modcld 12674 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  RR )
4847recnd 10068 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  CC )
49 0cnd 10033 . . . . . 6  |-  ( (
ph  /\  ps )  ->  0  e.  CC )
50 df-neg 10269 . . . . . . 7  |-  -u ( M  /  2 )  =  ( 0  -  ( M  /  2 ) )
5140, 9, 503eqtr3g 2679 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  =  ( 0  -  ( M  /  2
) ) )
5248, 49, 7, 51subcan2d 10434 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  =  0 )
53 dvdsval3 14987 . . . . . 6  |-  ( ( M  e.  NN  /\  ( A  +  ( M  /  2 ) )  e.  ZZ )  -> 
( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( ( A  +  ( M  /  2
) )  mod  M
)  =  0 ) )
544, 44, 53syl2anc 693 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( ( A  +  ( M  /  2
) )  mod  M
)  =  0 ) )
5552, 54mpbird 247 . . . 4  |-  ( (
ph  /\  ps )  ->  M  ||  ( A  +  ( M  / 
2 ) ) )
564nnzd 11481 . . . . 5  |-  ( (
ph  /\  ps )  ->  M  e.  ZZ )
57 dvdssq 15280 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( A  +  ( M  /  2 ) )  e.  ZZ )  -> 
( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) ) )
5856, 44, 57syl2anc 693 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) ) )
5955, 58mpbid 222 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) )
6022sqvald 13005 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  =  ( M  x.  M ) )
614nnne0d 11065 . . . . . 6  |-  ( (
ph  /\  ps )  ->  M  =/=  0 )
62 dvdsmulcr 15011 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( A  +  ( M  /  2 ) )  e.  ZZ  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( ( M  x.  M )  ||  (
( A  +  ( M  /  2 ) )  x.  M )  <-> 
M  ||  ( A  +  ( M  / 
2 ) ) ) )
6356, 44, 56, 61, 62syl112anc 1330 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( M  x.  M )  ||  (
( A  +  ( M  /  2 ) )  x.  M )  <-> 
M  ||  ( A  +  ( M  / 
2 ) ) ) )
6455, 63mpbird 247 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M  x.  M
)  ||  ( ( A  +  ( M  /  2 ) )  x.  M ) )
6560, 64eqbrtrd 4675 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) )  x.  M ) )
66 zsqcl 12934 . . . . 5  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
6756, 66syl 17 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  e.  ZZ )
68 zsqcl 12934 . . . . 5  |-  ( ( A  +  ( M  /  2 ) )  e.  ZZ  ->  (
( A  +  ( M  /  2 ) ) ^ 2 )  e.  ZZ )
6944, 68syl 17 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) ) ^ 2 )  e.  ZZ )
7044, 56zmulcld 11488 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  M
)  e.  ZZ )
71 dvds2sub 15016 . . . 4  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( ( A  +  ( M  /  2
) ) ^ 2 )  e.  ZZ  /\  ( ( A  +  ( M  /  2
) )  x.  M
)  e.  ZZ )  ->  ( ( ( M ^ 2 ) 
||  ( ( A  +  ( M  / 
2 ) ) ^
2 )  /\  ( M ^ 2 )  ||  ( ( A  +  ( M  /  2
) )  x.  M
) )  ->  ( M ^ 2 )  ||  ( ( ( A  +  ( M  / 
2 ) ) ^
2 )  -  (
( A  +  ( M  /  2 ) )  x.  M ) ) ) )
7267, 69, 70, 71syl3anc 1326 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  ||  ( ( A  +  ( M  /  2
) ) ^ 2 )  /\  ( M ^ 2 )  ||  ( ( A  +  ( M  /  2
) )  x.  M
) )  ->  ( M ^ 2 )  ||  ( ( ( A  +  ( M  / 
2 ) ) ^
2 )  -  (
( A  +  ( M  /  2 ) )  x.  M ) ) ) )
7359, 65, 72mp2and 715 . 2  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( ( A  +  ( M  /  2 ) ) ^ 2 )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
7444zcnd 11483 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  CC )
7574sqvald 13005 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) ) ^ 2 )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  /  2
) ) ) )
7675oveq1d 6665 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) ) ^
2 )  -  (
( A  +  ( M  /  2 ) )  x.  M ) )  =  ( ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  / 
2 ) ) )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
7774, 74, 22subdid 10486 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  / 
2 ) ) )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
78222halvesd 11278 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 )  +  ( M  /  2 ) )  =  M )
7978oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  (
( M  /  2
)  +  ( M  /  2 ) ) )  =  ( ( A  +  ( M  /  2 ) )  -  M ) )
802zcnd 11483 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  A  e.  CC )
8180, 7, 7pnpcan2d 10430 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  (
( M  /  2
)  +  ( M  /  2 ) ) )  =  ( A  -  ( M  / 
2 ) ) )
8279, 81eqtr3d 2658 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  M
)  =  ( A  -  ( M  / 
2 ) ) )
8382oveq2d 6666 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  /  2
) ) ) )
84 subsq 12972 . . . . 5  |-  ( ( A  e.  CC  /\  ( M  /  2
)  e.  CC )  ->  ( ( A ^ 2 )  -  ( ( M  / 
2 ) ^ 2 ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  / 
2 ) ) ) )
8580, 7, 84syl2anc 693 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A ^
2 )  -  (
( M  /  2
) ^ 2 ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  /  2
) ) ) )
8628oveq2d 6666 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A ^
2 )  -  (
( M  /  2
) ^ 2 ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
8783, 85, 863eqtr2d 2662 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
8876, 77, 873eqtr2d 2662 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) ) ^
2 )  -  (
( A  +  ( M  /  2 ) )  x.  M ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
8973, 88breqtrd 4679 1  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377    mod cmo 12668   ^cexp 12860    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  4sqlem16  15664
  Copyright terms: Public domain W3C validator