MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1val Structured version   Visualization version   Unicode version

Theorem evls1val 19685
Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.)
Hypotheses
Ref Expression
evls1fval.q  |-  Q  =  ( S evalSub1  R )
evls1fval.e  |-  E  =  ( 1o evalSub  S )
evls1fval.b  |-  B  =  ( Base `  S
)
evls1val.m  |-  M  =  ( 1o mPoly  ( Ss  R
) )
evls1val.k  |-  K  =  ( Base `  M
)
Assertion
Ref Expression
evls1val  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  ( Q `  A )  =  ( ( ( E `  R ) `  A
)  o.  ( y  e.  B  |->  ( 1o 
X.  { y } ) ) ) )
Distinct variable group:    y, B
Allowed substitution hints:    A( y)    Q( y)    R( y)    S( y)    E( y)    K( y)    M( y)

Proof of Theorem evls1val
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 evls1fval.b . . . . . . . 8  |-  B  =  ( Base `  S
)
21subrgss 18781 . . . . . . 7  |-  ( R  e.  (SubRing `  S
)  ->  R  C_  B
)
32adantl 482 . . . . . 6  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  R  C_  B
)
4 elpwg 4166 . . . . . . 7  |-  ( R  e.  (SubRing `  S
)  ->  ( R  e.  ~P B  <->  R  C_  B
) )
54adantl 482 . . . . . 6  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( R  e.  ~P B  <->  R  C_  B
) )
63, 5mpbird 247 . . . . 5  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  R  e.  ~P B )
7 evls1fval.q . . . . . 6  |-  Q  =  ( S evalSub1  R )
8 evls1fval.e . . . . . 6  |-  E  =  ( 1o evalSub  S )
97, 8, 1evls1fval 19684 . . . . 5  |-  ( ( S  e.  CRing  /\  R  e.  ~P B )  ->  Q  =  ( (
x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( E `  R
) ) )
106, 9syldan 487 . . . 4  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Q  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( E `
 R ) ) )
1110fveq1d 6193 . . 3  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( Q `  A )  =  ( ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( E `
 R ) ) `
 A ) )
12113adant3 1081 . 2  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  ( Q `  A )  =  ( ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( E `
 R ) ) `
 A ) )
13 1on 7567 . . . . . 6  |-  1o  e.  On
1413a1i 11 . . . . 5  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  1o  e.  On )
15 simp1 1061 . . . . 5  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  S  e.  CRing
)
16 simp2 1062 . . . . 5  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  R  e.  (SubRing `  S ) )
178fveq1i 6192 . . . . . 6  |-  ( E `
 R )  =  ( ( 1o evalSub  S ) `
 R )
18 evls1val.m . . . . . 6  |-  M  =  ( 1o mPoly  ( Ss  R
) )
19 eqid 2622 . . . . . 6  |-  ( Ss  R )  =  ( Ss  R )
20 eqid 2622 . . . . . 6  |-  ( S  ^s  ( B  ^m  1o ) )  =  ( S  ^s  ( B  ^m  1o ) )
2117, 18, 19, 20, 1evlsrhm 19521 . . . . 5  |-  ( ( 1o  e.  On  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( E `  R )  e.  ( M RingHom  ( S  ^s  ( B  ^m  1o ) ) ) )
2214, 15, 16, 21syl3anc 1326 . . . 4  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  ( E `  R )  e.  ( M RingHom  ( S  ^s  ( B  ^m  1o ) ) ) )
23 evls1val.k . . . . 5  |-  K  =  ( Base `  M
)
24 eqid 2622 . . . . 5  |-  ( Base `  ( S  ^s  ( B  ^m  1o ) ) )  =  ( Base `  ( S  ^s  ( B  ^m  1o ) ) )
2523, 24rhmf 18726 . . . 4  |-  ( ( E `  R )  e.  ( M RingHom  ( S  ^s  ( B  ^m  1o ) ) )  -> 
( E `  R
) : K --> ( Base `  ( S  ^s  ( B  ^m  1o ) ) ) )
2622, 25syl 17 . . 3  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  ( E `  R ) : K --> ( Base `  ( S  ^s  ( B  ^m  1o ) ) ) )
27 simp3 1063 . . 3  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  A  e.  K )
28 fvco3 6275 . . 3  |-  ( ( ( E `  R
) : K --> ( Base `  ( S  ^s  ( B  ^m  1o ) ) )  /\  A  e.  K )  ->  (
( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( E `
 R ) ) `
 A )  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) ) `  ( ( E `  R ) `
 A ) ) )
2926, 27, 28syl2anc 693 . 2  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  ( (
( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( E `
 R ) ) `
 A )  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) ) `  ( ( E `  R ) `
 A ) ) )
3026, 27ffvelrnd 6360 . . . 4  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  ( ( E `  R ) `  A )  e.  (
Base `  ( S  ^s  ( B  ^m  1o ) ) ) )
31 ovex 6678 . . . . 5  |-  ( B  ^m  1o )  e. 
_V
3220, 1pwsbas 16147 . . . . 5  |-  ( ( S  e.  CRing  /\  ( B  ^m  1o )  e. 
_V )  ->  ( B  ^m  ( B  ^m  1o ) )  =  (
Base `  ( S  ^s  ( B  ^m  1o ) ) ) )
3315, 31, 32sylancl 694 . . . 4  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  ( B  ^m  ( B  ^m  1o ) )  =  (
Base `  ( S  ^s  ( B  ^m  1o ) ) ) )
3430, 33eleqtrrd 2704 . . 3  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  ( ( E `  R ) `  A )  e.  ( B  ^m  ( B  ^m  1o ) ) )
35 coeq1 5279 . . . 4  |-  ( x  =  ( ( E `
 R ) `  A )  ->  (
x  o.  ( y  e.  B  |->  ( 1o 
X.  { y } ) ) )  =  ( ( ( E `
 R ) `  A )  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )
36 eqid 2622 . . . 4  |-  ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )  =  ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) )
37 fvex 6201 . . . . 5  |-  ( ( E `  R ) `
 A )  e. 
_V
38 fvex 6201 . . . . . . 7  |-  ( Base `  S )  e.  _V
391, 38eqeltri 2697 . . . . . 6  |-  B  e. 
_V
4039mptex 6486 . . . . 5  |-  ( y  e.  B  |->  ( 1o 
X.  { y } ) )  e.  _V
4137, 40coex 7118 . . . 4  |-  ( ( ( E `  R
) `  A )  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) )  e.  _V
4235, 36, 41fvmpt 6282 . . 3  |-  ( ( ( E `  R
) `  A )  e.  ( B  ^m  ( B  ^m  1o ) )  ->  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) ) `  (
( E `  R
) `  A )
)  =  ( ( ( E `  R
) `  A )  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )
4334, 42syl 17 . 2  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  ( (
x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) ) `  ( ( E `  R ) `  A
) )  =  ( ( ( E `  R ) `  A
)  o.  ( y  e.  B  |->  ( 1o 
X.  { y } ) ) ) )
4412, 29, 433eqtrd 2660 1  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )  /\  A  e.  K
)  ->  ( Q `  A )  =  ( ( ( E `  R ) `  A
)  o.  ( y  e.  B  |->  ( 1o 
X.  { y } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   Oncon0 5723   -->wf 5884   ` cfv 5888  (class class class)co 6650   1oc1o 7553    ^m cmap 7857   Basecbs 15857   ↾s cress 15858    ^s cpws 16107   CRingccrg 18548   RingHom crh 18712  SubRingcsubrg 18776   mPoly cmpl 19353   evalSub ces 19504   evalSub1 ces1 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-evls 19506  df-evls1 19680
This theorem is referenced by:  evls1var  19702
  Copyright terms: Public domain W3C validator