MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem8 Structured version   Visualization version   Unicode version

Theorem basellem8 24814
Description: Lemma for basel 24816. The function  F of partial sums of the inverse squares is bounded below by  J and above by  K, obtained by summing the inequality 
cot ^ 2 x  <_ 
1  /  x ^
2  <_  csc ^ 2 x  =  cot ^
2 x  +  1 over the  M roots of the polynomial  P, and applying the identity basellem5 24811. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.g  |-  G  =  ( n  e.  NN  |->  ( 1  /  (
( 2  x.  n
)  +  1 ) ) )
basel.f  |-  F  =  seq 1 (  +  ,  ( n  e.  NN  |->  ( n ^ -u 2 ) ) )
basel.h  |-  H  =  ( ( NN  X.  { ( ( pi
^ 2 )  / 
6 ) } )  oF  x.  (
( NN  X.  {
1 } )  oF  -  G ) )
basel.j  |-  J  =  ( H  oF  x.  ( ( NN 
X.  { 1 } )  oF  +  ( ( NN  X.  { -u 2 } )  oF  x.  G
) ) )
basel.k  |-  K  =  ( H  oF  x.  ( ( NN 
X.  { 1 } )  oF  +  G ) )
basellem8.n  |-  N  =  ( ( 2  x.  M )  +  1 )
Assertion
Ref Expression
basellem8  |-  ( M  e.  NN  ->  (
( J `  M
)  <_  ( F `  M )  /\  ( F `  M )  <_  ( K `  M
) ) )
Distinct variable groups:    n, F    n, M    n, J    n, N
Allowed substitution hints:    G( n)    H( n)    K( n)

Proof of Theorem basellem8
Dummy variables  k  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . 4  |-  ( M  e.  NN  ->  (
1 ... M )  e. 
Fin )
2 pire 24210 . . . . . . . 8  |-  pi  e.  RR
3 basellem8.n . . . . . . . . 9  |-  N  =  ( ( 2  x.  M )  +  1 )
4 2nn 11185 . . . . . . . . . . 11  |-  2  e.  NN
5 nnmulcl 11043 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
64, 5mpan 706 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  NN )
76peano2nnd 11037 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  +  1 )  e.  NN )
83, 7syl5eqel 2705 . . . . . . . 8  |-  ( M  e.  NN  ->  N  e.  NN )
9 nndivre 11056 . . . . . . . 8  |-  ( ( pi  e.  RR  /\  N  e.  NN )  ->  ( pi  /  N
)  e.  RR )
102, 8, 9sylancr 695 . . . . . . 7  |-  ( M  e.  NN  ->  (
pi  /  N )  e.  RR )
1110resqcld 13035 . . . . . 6  |-  ( M  e.  NN  ->  (
( pi  /  N
) ^ 2 )  e.  RR )
1211adantr 481 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( pi 
/  N ) ^
2 )  e.  RR )
133basellem1 24807 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( k  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
14 tanrpcl 24256 . . . . . . . 8  |-  ( ( ( k  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( tan `  ( ( k  x.  pi )  /  N
) )  e.  RR+ )
1513, 14syl 17 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+ )
1615rpred 11872 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR )
1715rpne0d 11877 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( tan `  (
( k  x.  pi )  /  N ) )  =/=  0 )
18 2z 11409 . . . . . . . 8  |-  2  e.  ZZ
19 znegcl 11412 . . . . . . . 8  |-  ( 2  e.  ZZ  ->  -u 2  e.  ZZ )
2018, 19ax-mp 5 . . . . . . 7  |-  -u 2  e.  ZZ
2120a1i 11 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  -u 2  e.  ZZ )
2216, 17, 21reexpclzd 13034 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  e.  RR )
2312, 22remulcld 10070 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  x.  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )  e.  RR )
24 elfznn 12370 . . . . . . 7  |-  ( k  e.  ( 1 ... M )  ->  k  e.  NN )
2524adantl 482 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  k  e.  NN )
2625nnred 11035 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  k  e.  RR )
2725nnne0d 11065 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  k  =/=  0
)
2826, 27, 21reexpclzd 13034 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( k ^ -u 2 )  e.  RR )
2916recnd 10068 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( tan `  (
( k  x.  pi )  /  N ) )  e.  CC )
30 2nn0 11309 . . . . . . . 8  |-  2  e.  NN0
31 expneg 12868 . . . . . . . 8  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  CC  /\  2  e.  NN0 )  ->  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
3229, 30, 31sylancl 694 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  ( 1  /  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 ) ) )
3332oveq2d 6666 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  x.  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( ( pi  /  N
) ^ 2 )  x.  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
3410recnd 10068 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
pi  /  N )  e.  CC )
3534sqcld 13006 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( pi  /  N
) ^ 2 )  e.  CC )
3635adantr 481 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( pi 
/  N ) ^
2 )  e.  CC )
37 rpexpcl 12879 . . . . . . . . . 10  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
3815, 18, 37sylancl 694 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  e.  RR+ )
3938rpred 11872 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  e.  RR )
4039recnd 10068 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  e.  CC )
4138rpne0d 11877 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  =/=  0 )
4236, 40, 41divrecd 10804 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  =  ( ( ( pi  /  N ) ^ 2 )  x.  ( 1  /  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
4333, 42eqtr4d 2659 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  x.  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( ( pi  /  N
) ^ 2 )  /  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 ) ) )
4425nnrpd 11870 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  k  e.  RR+ )
45 rpexpcl 12879 . . . . . . 7  |-  ( ( k  e.  RR+  /\  -u 2  e.  ZZ )  ->  (
k ^ -u 2
)  e.  RR+ )
4644, 20, 45sylancl 694 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( k ^ -u 2 )  e.  RR+ )
47 2cn 11091 . . . . . . . . . . . 12  |-  2  e.  CC
4847negnegi 10351 . . . . . . . . . . 11  |-  -u -u 2  =  2
4948oveq2i 6661 . . . . . . . . . 10  |-  ( k ^ -u -u 2
)  =  ( k ^ 2 )
5025nncnd 11036 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  k  e.  CC )
5150, 27, 21expnegd 13015 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( k ^ -u -u 2 )  =  ( 1  /  (
k ^ -u 2
) ) )
5249, 51syl5reqr 2671 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( 1  / 
( k ^ -u 2
) )  =  ( k ^ 2 ) )
5352oveq1d 6665 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( 1  /  ( k ^ -u 2 ) )  x.  ( ( pi  /  N ) ^ 2 ) )  =  ( ( k ^ 2 )  x.  ( ( pi  /  N ) ^ 2 ) ) )
54 nncn 11028 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  CC )
55 nnne0 11053 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  =/=  0 )
5620a1i 11 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  -u 2  e.  ZZ )
5754, 55, 56expclzd 13013 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
k ^ -u 2
)  e.  CC )
5825, 57syl 17 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( k ^ -u 2 )  e.  CC )
5950, 27, 21expne0d 13014 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( k ^ -u 2 )  =/=  0
)
6036, 58, 59divrec2d 10805 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  / 
( k ^ -u 2
) )  =  ( ( 1  /  (
k ^ -u 2
) )  x.  (
( pi  /  N
) ^ 2 ) ) )
612recni 10052 . . . . . . . . . . . 12  |-  pi  e.  CC
6261a1i 11 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  pi  e.  CC )
638nncnd 11036 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  N  e.  CC )
648nnne0d 11065 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  N  =/=  0 )
6563, 64jca 554 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( N  e.  CC  /\  N  =/=  0 ) )
6665adantr 481 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( N  e.  CC  /\  N  =/=  0 ) )
67 divass 10703 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  pi  e.  CC  /\  ( N  e.  CC  /\  N  =/=  0 ) )  -> 
( ( k  x.  pi )  /  N
)  =  ( k  x.  ( pi  /  N ) ) )
6850, 62, 66, 67syl3anc 1326 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( k  x.  pi )  /  N )  =  ( k  x.  ( pi 
/  N ) ) )
6968oveq1d 6665 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( k  x.  pi )  /  N ) ^
2 )  =  ( ( k  x.  (
pi  /  N )
) ^ 2 ) )
7034adantr 481 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( pi  /  N )  e.  CC )
7150, 70sqmuld 13020 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( k  x.  ( pi  /  N ) ) ^
2 )  =  ( ( k ^ 2 )  x.  ( ( pi  /  N ) ^ 2 ) ) )
7269, 71eqtrd 2656 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( k  x.  pi )  /  N ) ^
2 )  =  ( ( k ^ 2 )  x.  ( ( pi  /  N ) ^ 2 ) ) )
7353, 60, 723eqtr4d 2666 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  / 
( k ^ -u 2
) )  =  ( ( ( k  x.  pi )  /  N
) ^ 2 ) )
74 elioore 12205 . . . . . . . . . 10  |-  ( ( ( k  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( (
k  x.  pi )  /  N )  e.  RR )
7513, 74syl 17 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( k  x.  pi )  /  N )  e.  RR )
7675resqcld 13035 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( k  x.  pi )  /  N ) ^
2 )  e.  RR )
77 tangtx 24257 . . . . . . . . . 10  |-  ( ( ( k  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( (
k  x.  pi )  /  N )  < 
( tan `  (
( k  x.  pi )  /  N ) ) )
7813, 77syl 17 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( k  x.  pi )  /  N )  <  ( tan `  ( ( k  x.  pi )  /  N ) ) )
79 eliooord 12233 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( 0  <  ( ( k  x.  pi )  /  N )  /\  (
( k  x.  pi )  /  N )  < 
( pi  /  2
) ) )
8013, 79syl 17 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( 0  < 
( ( k  x.  pi )  /  N
)  /\  ( (
k  x.  pi )  /  N )  < 
( pi  /  2
) ) )
8180simpld 475 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  0  <  (
( k  x.  pi )  /  N ) )
8275, 81elrpd 11869 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( k  x.  pi )  /  N )  e.  RR+ )
8382rpge0d 11876 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  0  <_  (
( k  x.  pi )  /  N ) )
8415rpge0d 11876 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  0  <_  ( tan `  ( ( k  x.  pi )  /  N ) ) )
8575, 16, 83, 84lt2sqd 13043 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( k  x.  pi )  /  N )  < 
( tan `  (
( k  x.  pi )  /  N ) )  <-> 
( ( ( k  x.  pi )  /  N ) ^ 2 )  <  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) ) )
8678, 85mpbid 222 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( k  x.  pi )  /  N ) ^
2 )  <  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )
8776, 39, 86ltled 10185 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( k  x.  pi )  /  N ) ^
2 )  <_  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )
8873, 87eqbrtrd 4675 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  / 
( k ^ -u 2
) )  <_  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )
8912, 46, 38, 88lediv23d 11938 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  <_  ( k ^ -u 2 ) )
9043, 89eqbrtrd 4675 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  x.  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )  <_  ( k ^ -u 2 ) )
911, 23, 28, 90fsumle 14531 . . 3  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( ( ( pi  /  N ) ^ 2 )  x.  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )  <_  sum_ k  e.  ( 1 ... M
) ( k ^ -u 2 ) )
92 oveq2 6658 . . . . . . . . . . 11  |-  ( n  =  M  ->  (
2  x.  n )  =  ( 2  x.  M ) )
9392oveq1d 6665 . . . . . . . . . 10  |-  ( n  =  M  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  M )  +  1 ) )
9493, 3syl6eqr 2674 . . . . . . . . 9  |-  ( n  =  M  ->  (
( 2  x.  n
)  +  1 )  =  N )
9594oveq2d 6666 . . . . . . . 8  |-  ( n  =  M  ->  (
1  /  ( ( 2  x.  n )  +  1 ) )  =  ( 1  /  N ) )
9695oveq2d 6666 . . . . . . 7  |-  ( n  =  M  ->  (
1  -  ( 1  /  ( ( 2  x.  n )  +  1 ) ) )  =  ( 1  -  ( 1  /  N
) ) )
9796oveq2d 6666 . . . . . 6  |-  ( n  =  M  ->  (
( ( pi ^
2 )  /  6
)  x.  ( 1  -  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) )  =  ( ( ( pi ^ 2 )  /  6 )  x.  ( 1  -  (
1  /  N ) ) ) )
9895oveq2d 6666 . . . . . . 7  |-  ( n  =  M  ->  ( -u 2  x.  ( 1  /  ( ( 2  x.  n )  +  1 ) ) )  =  ( -u 2  x.  ( 1  /  N
) ) )
9998oveq2d 6666 . . . . . 6  |-  ( n  =  M  ->  (
1  +  ( -u
2  x.  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( 1  +  ( -u 2  x.  ( 1  /  N
) ) ) )
10097, 99oveq12d 6668 . . . . 5  |-  ( n  =  M  ->  (
( ( ( pi
^ 2 )  / 
6 )  x.  (
1  -  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) )  x.  ( 1  +  ( -u 2  x.  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) ) )  =  ( ( ( ( pi ^ 2 )  /  6 )  x.  ( 1  -  ( 1  /  N
) ) )  x.  ( 1  +  (
-u 2  x.  (
1  /  N ) ) ) ) )
101 basel.j . . . . . 6  |-  J  =  ( H  oF  x.  ( ( NN 
X.  { 1 } )  oF  +  ( ( NN  X.  { -u 2 } )  oF  x.  G
) ) )
102 nnex 11026 . . . . . . . . 9  |-  NN  e.  _V
103102a1i 11 . . . . . . . 8  |-  ( T. 
->  NN  e.  _V )
104 ovexd 6680 . . . . . . . 8  |-  ( ( T.  /\  n  e.  NN )  ->  (
( ( pi ^
2 )  /  6
)  x.  ( 1  -  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) )  e.  _V )
105 ovexd 6680 . . . . . . . 8  |-  ( ( T.  /\  n  e.  NN )  ->  (
1  +  ( -u
2  x.  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) )  e.  _V )
106 basel.h . . . . . . . . 9  |-  H  =  ( ( NN  X.  { ( ( pi
^ 2 )  / 
6 ) } )  oF  x.  (
( NN  X.  {
1 } )  oF  -  G ) )
1072resqcli 12949 . . . . . . . . . . . 12  |-  ( pi
^ 2 )  e.  RR
108 6re 11101 . . . . . . . . . . . 12  |-  6  e.  RR
109 6nn 11189 . . . . . . . . . . . . 13  |-  6  e.  NN
110109nnne0i 11055 . . . . . . . . . . . 12  |-  6  =/=  0
111107, 108, 110redivcli 10792 . . . . . . . . . . 11  |-  ( ( pi ^ 2 )  /  6 )  e.  RR
112111a1i 11 . . . . . . . . . 10  |-  ( ( T.  /\  n  e.  NN )  ->  (
( pi ^ 2 )  /  6 )  e.  RR )
113 ovexd 6680 . . . . . . . . . 10  |-  ( ( T.  /\  n  e.  NN )  ->  (
1  -  ( 1  /  ( ( 2  x.  n )  +  1 ) ) )  e.  _V )
114 fconstmpt 5163 . . . . . . . . . . 11  |-  ( NN 
X.  { ( ( pi ^ 2 )  /  6 ) } )  =  ( n  e.  NN  |->  ( ( pi ^ 2 )  /  6 ) )
115114a1i 11 . . . . . . . . . 10  |-  ( T. 
->  ( NN  X.  {
( ( pi ^
2 )  /  6
) } )  =  ( n  e.  NN  |->  ( ( pi ^
2 )  /  6
) ) )
116 1zzd 11408 . . . . . . . . . . 11  |-  ( ( T.  /\  n  e.  NN )  ->  1  e.  ZZ )
117 ovexd 6680 . . . . . . . . . . 11  |-  ( ( T.  /\  n  e.  NN )  ->  (
1  /  ( ( 2  x.  n )  +  1 ) )  e.  _V )
118 fconstmpt 5163 . . . . . . . . . . . 12  |-  ( NN 
X.  { 1 } )  =  ( n  e.  NN  |->  1 )
119118a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  ( NN  X.  {
1 } )  =  ( n  e.  NN  |->  1 ) )
120 basel.g . . . . . . . . . . . 12  |-  G  =  ( n  e.  NN  |->  ( 1  /  (
( 2  x.  n
)  +  1 ) ) )
121120a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  G  =  (
n  e.  NN  |->  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) )
122103, 116, 117, 119, 121offval2 6914 . . . . . . . . . 10  |-  ( T. 
->  ( ( NN  X.  { 1 } )  oF  -  G
)  =  ( n  e.  NN  |->  ( 1  -  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) ) )
123103, 112, 113, 115, 122offval2 6914 . . . . . . . . 9  |-  ( T. 
->  ( ( NN  X.  { ( ( pi
^ 2 )  / 
6 ) } )  oF  x.  (
( NN  X.  {
1 } )  oF  -  G ) )  =  ( n  e.  NN  |->  ( ( ( pi ^ 2 )  /  6 )  x.  ( 1  -  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) ) ) )
124106, 123syl5eq 2668 . . . . . . . 8  |-  ( T. 
->  H  =  (
n  e.  NN  |->  ( ( ( pi ^
2 )  /  6
)  x.  ( 1  -  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) ) ) )
125 ovexd 6680 . . . . . . . . 9  |-  ( ( T.  /\  n  e.  NN )  ->  ( -u 2  x.  ( 1  /  ( ( 2  x.  n )  +  1 ) ) )  e.  _V )
12647negcli 10349 . . . . . . . . . . 11  |-  -u 2  e.  CC
127126a1i 11 . . . . . . . . . 10  |-  ( ( T.  /\  n  e.  NN )  ->  -u 2  e.  CC )
128 fconstmpt 5163 . . . . . . . . . . 11  |-  ( NN 
X.  { -u 2 } )  =  ( n  e.  NN  |->  -u
2 )
129128a1i 11 . . . . . . . . . 10  |-  ( T. 
->  ( NN  X.  { -u 2 } )  =  ( n  e.  NN  |->  -u 2 ) )
130103, 127, 117, 129, 121offval2 6914 . . . . . . . . 9  |-  ( T. 
->  ( ( NN  X.  { -u 2 } )  oF  x.  G
)  =  ( n  e.  NN  |->  ( -u
2  x.  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) ) )
131103, 116, 125, 119, 130offval2 6914 . . . . . . . 8  |-  ( T. 
->  ( ( NN  X.  { 1 } )  oF  +  ( ( NN  X.  { -u 2 } )  oF  x.  G ) )  =  ( n  e.  NN  |->  ( 1  +  ( -u 2  x.  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) ) ) )
132103, 104, 105, 124, 131offval2 6914 . . . . . . 7  |-  ( T. 
->  ( H  oF  x.  ( ( NN 
X.  { 1 } )  oF  +  ( ( NN  X.  { -u 2 } )  oF  x.  G
) ) )  =  ( n  e.  NN  |->  ( ( ( ( pi ^ 2 )  /  6 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) )  x.  (
1  +  ( -u
2  x.  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) ) ) ) )
133132trud 1493 . . . . . 6  |-  ( H  oF  x.  (
( NN  X.  {
1 } )  oF  +  ( ( NN  X.  { -u
2 } )  oF  x.  G ) ) )  =  ( n  e.  NN  |->  ( ( ( ( pi
^ 2 )  / 
6 )  x.  (
1  -  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) )  x.  ( 1  +  ( -u 2  x.  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) ) ) )
134101, 133eqtri 2644 . . . . 5  |-  J  =  ( n  e.  NN  |->  ( ( ( ( pi ^ 2 )  /  6 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) )  x.  (
1  +  ( -u
2  x.  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) ) ) )
135 ovex 6678 . . . . 5  |-  ( ( ( ( pi ^
2 )  /  6
)  x.  ( 1  -  ( 1  /  N ) ) )  x.  ( 1  +  ( -u 2  x.  ( 1  /  N
) ) ) )  e.  _V
136100, 134, 135fvmpt 6282 . . . 4  |-  ( M  e.  NN  ->  ( J `  M )  =  ( ( ( ( pi ^ 2 )  /  6 )  x.  ( 1  -  ( 1  /  N
) ) )  x.  ( 1  +  (
-u 2  x.  (
1  /  N ) ) ) ) )
137111recni 10052 . . . . . . . 8  |-  ( ( pi ^ 2 )  /  6 )  e.  CC
138137a1i 11 . . . . . . 7  |-  ( M  e.  NN  ->  (
( pi ^ 2 )  /  6 )  e.  CC )
1396nncnd 11036 . . . . . . . 8  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  CC )
140139, 63, 64divcld 10801 . . . . . . 7  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  /  N )  e.  CC )
141 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
142 subcl 10280 . . . . . . . . 9  |-  ( ( ( 2  x.  M
)  e.  CC  /\  1  e.  CC )  ->  ( ( 2  x.  M )  -  1 )  e.  CC )
143139, 141, 142sylancl 694 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  CC )
144143, 63, 64divcld 10801 . . . . . . 7  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  /  N )  e.  CC )
145138, 140, 144mulassd 10063 . . . . . 6  |-  ( M  e.  NN  ->  (
( ( ( pi
^ 2 )  / 
6 )  x.  (
( 2  x.  M
)  /  N ) )  x.  ( ( ( 2  x.  M
)  -  1 )  /  N ) )  =  ( ( ( pi ^ 2 )  /  6 )  x.  ( ( ( 2  x.  M )  /  N )  x.  (
( ( 2  x.  M )  -  1 )  /  N ) ) ) )
146 1cnd 10056 . . . . . . . . . 10  |-  ( M  e.  NN  ->  1  e.  CC )
14763, 146, 63, 64divsubdird 10840 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( N  -  1 )  /  N )  =  ( ( N  /  N )  -  ( 1  /  N
) ) )
1483oveq1i 6660 . . . . . . . . . . 11  |-  ( N  -  1 )  =  ( ( ( 2  x.  M )  +  1 )  -  1 )
149 pncan 10287 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  M
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  M )  +  1 )  -  1 )  =  ( 2  x.  M ) )
150139, 141, 149sylancl 694 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  +  1 )  -  1 )  =  ( 2  x.  M ) )
151148, 150syl5eq 2668 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( N  -  1 )  =  ( 2  x.  M ) )
152151oveq1d 6665 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( N  -  1 )  /  N )  =  ( ( 2  x.  M )  /  N ) )
15363, 64dividd 10799 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( N  /  N )  =  1 )
154153oveq1d 6665 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( N  /  N
)  -  ( 1  /  N ) )  =  ( 1  -  ( 1  /  N
) ) )
155147, 152, 1543eqtr3rd 2665 . . . . . . . 8  |-  ( M  e.  NN  ->  (
1  -  ( 1  /  N ) )  =  ( ( 2  x.  M )  /  N ) )
156155oveq2d 6666 . . . . . . 7  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  /  6
)  x.  ( 1  -  ( 1  /  N ) ) )  =  ( ( ( pi ^ 2 )  /  6 )  x.  ( ( 2  x.  M )  /  N
) ) )
157126a1i 11 . . . . . . . . 9  |-  ( M  e.  NN  ->  -u 2  e.  CC )
15863, 157, 63, 64divdird 10839 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( N  +  -u
2 )  /  N
)  =  ( ( N  /  N )  +  ( -u 2  /  N ) ) )
159 negsub 10329 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  2  e.  CC )  ->  ( N  +  -u
2 )  =  ( N  -  2 ) )
16063, 47, 159sylancl 694 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( N  +  -u 2 )  =  ( N  - 
2 ) )
161 df-2 11079 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
1623, 161oveq12i 6662 . . . . . . . . . . 11  |-  ( N  -  2 )  =  ( ( ( 2  x.  M )  +  1 )  -  (
1  +  1 ) )
163139, 146, 146pnpcan2d 10430 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  +  1 )  -  ( 1  +  1 ) )  =  ( ( 2  x.  M )  - 
1 ) )
164162, 163syl5eq 2668 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( N  -  2 )  =  ( ( 2  x.  M )  - 
1 ) )
165160, 164eqtrd 2656 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( N  +  -u 2 )  =  ( ( 2  x.  M )  - 
1 ) )
166165oveq1d 6665 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( N  +  -u
2 )  /  N
)  =  ( ( ( 2  x.  M
)  -  1 )  /  N ) )
167157, 63, 64divrecd 10804 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( -u 2  /  N )  =  ( -u 2  x.  ( 1  /  N
) ) )
168153, 167oveq12d 6668 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( N  /  N
)  +  ( -u
2  /  N ) )  =  ( 1  +  ( -u 2  x.  ( 1  /  N
) ) ) )
169158, 166, 1683eqtr3rd 2665 . . . . . . 7  |-  ( M  e.  NN  ->  (
1  +  ( -u
2  x.  ( 1  /  N ) ) )  =  ( ( ( 2  x.  M
)  -  1 )  /  N ) )
170156, 169oveq12d 6668 . . . . . 6  |-  ( M  e.  NN  ->  (
( ( ( pi
^ 2 )  / 
6 )  x.  (
1  -  ( 1  /  N ) ) )  x.  ( 1  +  ( -u 2  x.  ( 1  /  N
) ) ) )  =  ( ( ( ( pi ^ 2 )  /  6 )  x.  ( ( 2  x.  M )  /  N ) )  x.  ( ( ( 2  x.  M )  - 
1 )  /  N
) ) )
1718nnsqcld 13029 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( N ^ 2 )  e.  NN )
172171nncnd 11036 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( N ^ 2 )  e.  CC )
173 6cn 11102 . . . . . . . . . 10  |-  6  e.  CC
174 mulcom 10022 . . . . . . . . . 10  |-  ( ( ( N ^ 2 )  e.  CC  /\  6  e.  CC )  ->  ( ( N ^
2 )  x.  6 )  =  ( 6  x.  ( N ^
2 ) ) )
175172, 173, 174sylancl 694 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( N ^ 2 )  x.  6 )  =  ( 6  x.  ( N ^ 2 ) ) )
176175oveq2d 6666 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  x.  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) ) )  /  ( ( N ^ 2 )  x.  6 ) )  =  ( ( ( pi ^ 2 )  x.  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) ) )  / 
( 6  x.  ( N ^ 2 ) ) ) )
177107recni 10052 . . . . . . . . . 10  |-  ( pi
^ 2 )  e.  CC
178177a1i 11 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
pi ^ 2 )  e.  CC )
179139, 143mulcld 10060 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  e.  CC )
180171nnne0d 11065 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( N ^ 2 )  =/=  0 )
181172, 180jca 554 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( N ^ 2 )  e.  CC  /\  ( N ^ 2 )  =/=  0 ) )
182173, 110pm3.2i 471 . . . . . . . . . 10  |-  ( 6  e.  CC  /\  6  =/=  0 )
183182a1i 11 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
6  e.  CC  /\  6  =/=  0 ) )
184 divmuldiv 10725 . . . . . . . . 9  |-  ( ( ( ( pi ^
2 )  e.  CC  /\  ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  e.  CC )  /\  ( ( ( N ^ 2 )  e.  CC  /\  ( N ^ 2 )  =/=  0 )  /\  (
6  e.  CC  /\  6  =/=  0 ) ) )  ->  ( (
( pi ^ 2 )  /  ( N ^ 2 ) )  x.  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
6 ) )  =  ( ( ( pi
^ 2 )  x.  ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) )  /  (
( N ^ 2 )  x.  6 ) ) )
185178, 179, 181, 183, 184syl22anc 1327 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  /  ( N ^ 2 ) )  x.  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
6 ) )  =  ( ( ( pi
^ 2 )  x.  ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) )  /  (
( N ^ 2 )  x.  6 ) ) )
186 divmuldiv 10725 . . . . . . . . 9  |-  ( ( ( ( pi ^
2 )  e.  CC  /\  ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  e.  CC )  /\  ( ( 6  e.  CC  /\  6  =/=  0 )  /\  (
( N ^ 2 )  e.  CC  /\  ( N ^ 2 )  =/=  0 ) ) )  ->  ( (
( pi ^ 2 )  /  6 )  x.  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
( N ^ 2 ) ) )  =  ( ( ( pi
^ 2 )  x.  ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) )  /  (
6  x.  ( N ^ 2 ) ) ) )
187178, 179, 183, 181, 186syl22anc 1327 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  /  6
)  x.  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  ( N ^
2 ) ) )  =  ( ( ( pi ^ 2 )  x.  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) ) )  / 
( 6  x.  ( N ^ 2 ) ) ) )
188176, 185, 1873eqtr4d 2666 . . . . . . 7  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  /  ( N ^ 2 ) )  x.  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
6 ) )  =  ( ( ( pi
^ 2 )  / 
6 )  x.  (
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  /  ( N ^ 2 ) ) ) )
18961a1i 11 . . . . . . . . 9  |-  ( M  e.  NN  ->  pi  e.  CC )
190189, 63, 64sqdivd 13021 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( pi  /  N
) ^ 2 )  =  ( ( pi
^ 2 )  / 
( N ^ 2 ) ) )
191190oveq1d 6665 . . . . . . 7  |-  ( M  e.  NN  ->  (
( ( pi  /  N ) ^ 2 )  x.  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 ) )  =  ( ( ( pi ^ 2 )  /  ( N ^
2 ) )  x.  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) )  /  6
) ) )
192139, 63, 143, 63, 64, 64divmuldivd 10842 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  /  N
)  x.  ( ( ( 2  x.  M
)  -  1 )  /  N ) )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
( N  x.  N
) ) )
19363sqvald 13005 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( N ^ 2 )  =  ( N  x.  N
) )
194193oveq2d 6666 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  /  ( N ^ 2 ) )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
( N  x.  N
) ) )
195192, 194eqtr4d 2659 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  /  N
)  x.  ( ( ( 2  x.  M
)  -  1 )  /  N ) )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
( N ^ 2 ) ) )
196195oveq2d 6666 . . . . . . 7  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  /  6
)  x.  ( ( ( 2  x.  M
)  /  N )  x.  ( ( ( 2  x.  M )  -  1 )  /  N ) ) )  =  ( ( ( pi ^ 2 )  /  6 )  x.  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) )  /  ( N ^ 2 ) ) ) )
197188, 191, 1963eqtr4d 2666 . . . . . 6  |-  ( M  e.  NN  ->  (
( ( pi  /  N ) ^ 2 )  x.  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 ) )  =  ( ( ( pi ^ 2 )  /  6 )  x.  ( ( ( 2  x.  M )  /  N )  x.  (
( ( 2  x.  M )  -  1 )  /  N ) ) ) )
198145, 170, 1973eqtr4d 2666 . . . . 5  |-  ( M  e.  NN  ->  (
( ( ( pi
^ 2 )  / 
6 )  x.  (
1  -  ( 1  /  N ) ) )  x.  ( 1  +  ( -u 2  x.  ( 1  /  N
) ) ) )  =  ( ( ( pi  /  N ) ^ 2 )  x.  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) )  /  6
) ) )
199 eqid 2622 . . . . . . 7  |-  ( x  e.  CC  |->  sum_ j  e.  ( 0 ... M
) ( ( ( N  _C  ( 2  x.  j ) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( x ^
j ) ) )  =  ( x  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j ) )  x.  ( -u 1 ^ ( M  -  j
) ) )  x.  ( x ^ j
) ) )
200 eqid 2622 . . . . . . 7  |-  ( n  e.  ( 1 ... M )  |->  ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( n  e.  ( 1 ... M )  |->  ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 ) )
2013, 199, 200basellem5 24811 . . . . . 6  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 ) )
202201oveq2d 6666 . . . . 5  |-  ( M  e.  NN  ->  (
( ( pi  /  N ) ^ 2 )  x.  sum_ k  e.  ( 1 ... M
) ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )  =  ( ( ( pi  /  N ) ^ 2 )  x.  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 ) ) )
203198, 202eqtr4d 2659 . . . 4  |-  ( M  e.  NN  ->  (
( ( ( pi
^ 2 )  / 
6 )  x.  (
1  -  ( 1  /  N ) ) )  x.  ( 1  +  ( -u 2  x.  ( 1  /  N
) ) ) )  =  ( ( ( pi  /  N ) ^ 2 )  x. 
sum_ k  e.  ( 1 ... M ) ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) ) )
20422recnd 10068 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC )
2051, 35, 204fsummulc2 14516 . . . 4  |-  ( M  e.  NN  ->  (
( ( pi  /  N ) ^ 2 )  x.  sum_ k  e.  ( 1 ... M
) ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )  =  sum_ k  e.  ( 1 ... M ) ( ( ( pi  /  N ) ^ 2 )  x.  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 ) ) )
206136, 203, 2053eqtrd 2660 . . 3  |-  ( M  e.  NN  ->  ( J `  M )  =  sum_ k  e.  ( 1 ... M ) ( ( ( pi 
/  N ) ^
2 )  x.  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) ) )
207 oveq1 6657 . . . . . . 7  |-  ( n  =  k  ->  (
n ^ -u 2
)  =  ( k ^ -u 2 ) )
208 eqid 2622 . . . . . . 7  |-  ( n  e.  NN  |->  ( n ^ -u 2 ) )  =  ( n  e.  NN  |->  ( n ^ -u 2 ) )
209 ovex 6678 . . . . . . 7  |-  ( k ^ -u 2 )  e.  _V
210207, 208, 209fvmpt 6282 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( n ^ -u 2
) ) `  k
)  =  ( k ^ -u 2 ) )
21125, 210syl 17 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( n  e.  NN  |->  ( n ^ -u 2 ) ) `  k )  =  ( k ^ -u 2 ) )
212 id 22 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  NN )
213 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
214212, 213syl6eleq 2711 . . . . 5  |-  ( M  e.  NN  ->  M  e.  ( ZZ>= `  1 )
)
215211, 214, 58fsumser 14461 . . . 4  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( k ^ -u 2 )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( n ^ -u 2 ) ) ) `
 M ) )
216 basel.f . . . . 5  |-  F  =  seq 1 (  +  ,  ( n  e.  NN  |->  ( n ^ -u 2 ) ) )
217216fveq1i 6192 . . . 4  |-  ( F `
 M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( n ^ -u 2 ) ) ) `  M
)
218215, 217syl6reqr 2675 . . 3  |-  ( M  e.  NN  ->  ( F `  M )  =  sum_ k  e.  ( 1 ... M ) ( k ^ -u 2
) )
21991, 206, 2183brtr4d 4685 . 2  |-  ( M  e.  NN  ->  ( J `  M )  <_  ( F `  M
) )
22075resincld 14873 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( sin `  (
( k  x.  pi )  /  N ) )  e.  RR )
221 sincosq1sgn 24250 . . . . . . . . 9  |-  ( ( ( k  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( 0  <  ( sin `  (
( k  x.  pi )  /  N ) )  /\  0  <  ( cos `  ( ( k  x.  pi )  /  N ) ) ) )
22213, 221syl 17 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( 0  < 
( sin `  (
( k  x.  pi )  /  N ) )  /\  0  <  ( cos `  ( ( k  x.  pi )  /  N ) ) ) )
223222simpld 475 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  0  <  ( sin `  ( ( k  x.  pi )  /  N ) ) )
224223gt0ne0d 10592 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( sin `  (
( k  x.  pi )  /  N ) )  =/=  0 )
225220, 224, 21reexpclzd 13034 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  e.  RR )
22612, 225remulcld 10070 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  x.  ( ( sin `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )  e.  RR )
227 sinltx 14919 . . . . . . . . . 10  |-  ( ( ( k  x.  pi )  /  N )  e.  RR+  ->  ( sin `  (
( k  x.  pi )  /  N ) )  <  ( ( k  x.  pi )  /  N ) )
22882, 227syl 17 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( sin `  (
( k  x.  pi )  /  N ) )  <  ( ( k  x.  pi )  /  N ) )
229220, 75, 228ltled 10185 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( sin `  (
( k  x.  pi )  /  N ) )  <_  ( ( k  x.  pi )  /  N ) )
230 0re 10040 . . . . . . . . . . 11  |-  0  e.  RR
231 ltle 10126 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( sin `  ( ( k  x.  pi )  /  N ) )  e.  RR )  -> 
( 0  <  ( sin `  ( ( k  x.  pi )  /  N ) )  -> 
0  <_  ( sin `  ( ( k  x.  pi )  /  N
) ) ) )
232230, 220, 231sylancr 695 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( 0  < 
( sin `  (
( k  x.  pi )  /  N ) )  ->  0  <_  ( sin `  ( ( k  x.  pi )  /  N ) ) ) )
233223, 232mpd 15 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  0  <_  ( sin `  ( ( k  x.  pi )  /  N ) ) )
234220, 75, 233, 83le2sqd 13044 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) )  <_  (
( k  x.  pi )  /  N )  <->  ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^
2 )  <_  (
( ( k  x.  pi )  /  N
) ^ 2 ) ) )
235229, 234mpbid 222 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  <_  ( (
( k  x.  pi )  /  N ) ^
2 ) )
236235, 73breqtrrd 4681 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  <_  ( (
( pi  /  N
) ^ 2 )  /  ( k ^ -u 2 ) ) )
237220resqcld 13035 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  e.  RR )
238237, 12, 46lemuldiv2d 11922 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( k ^ -u 2
)  x.  ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) )  <_  ( ( pi 
/  N ) ^
2 )  <->  ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^
2 )  <_  (
( ( pi  /  N ) ^ 2 )  /  ( k ^ -u 2 ) ) ) )
239220, 223elrpd 11869 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( sin `  (
( k  x.  pi )  /  N ) )  e.  RR+ )
240 rpexpcl 12879 . . . . . . . . 9  |-  ( ( ( sin `  (
( k  x.  pi )  /  N ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
241239, 18, 240sylancl 694 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  e.  RR+ )
24228, 12, 241lemuldivd 11921 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( k ^ -u 2
)  x.  ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) )  <_  ( ( pi 
/  N ) ^
2 )  <->  ( k ^ -u 2 )  <_ 
( ( ( pi 
/  N ) ^
2 )  /  (
( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
243238, 242bitr3d 270 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ 2 )  <_ 
( ( ( pi 
/  N ) ^
2 )  /  (
k ^ -u 2
) )  <->  ( k ^ -u 2 )  <_ 
( ( ( pi 
/  N ) ^
2 )  /  (
( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
244236, 243mpbid 222 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( k ^ -u 2 )  <_  (
( ( pi  /  N ) ^ 2 )  /  ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) ) )
245220recnd 10068 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( sin `  (
( k  x.  pi )  /  N ) )  e.  CC )
246 expneg 12868 . . . . . . . 8  |-  ( ( ( sin `  (
( k  x.  pi )  /  N ) )  e.  CC  /\  2  e.  NN0 )  ->  (
( sin `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
247245, 30, 246sylancl 694 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  ( 1  /  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 ) ) )
248247oveq2d 6666 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  x.  ( ( sin `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( ( pi  /  N
) ^ 2 )  x.  ( 1  / 
( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
249237recnd 10068 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  e.  CC )
250241rpne0d 11877 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  =/=  0 )
25136, 249, 250divrecd 10804 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  / 
( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  =  ( ( ( pi  /  N ) ^ 2 )  x.  ( 1  /  (
( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
252248, 251eqtr4d 2659 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( pi  /  N ) ^ 2 )  x.  ( ( sin `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( ( pi  /  N
) ^ 2 )  /  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 ) ) )
253244, 252breqtrrd 4681 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( k ^ -u 2 )  <_  (
( ( pi  /  N ) ^ 2 )  x.  ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 ) ) )
2541, 28, 226, 253fsumle 14531 . . 3  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( k ^ -u 2 )  <_  sum_ k  e.  ( 1 ... M
) ( ( ( pi  /  N ) ^ 2 )  x.  ( ( sin `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) ) )
25595oveq2d 6666 . . . . . 6  |-  ( n  =  M  ->  (
1  +  ( 1  /  ( ( 2  x.  n )  +  1 ) ) )  =  ( 1  +  ( 1  /  N
) ) )
25697, 255oveq12d 6668 . . . . 5  |-  ( n  =  M  ->  (
( ( ( pi
^ 2 )  / 
6 )  x.  (
1  -  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) )  x.  ( 1  +  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) )  =  ( ( ( ( pi ^ 2 )  /  6 )  x.  ( 1  -  ( 1  /  N
) ) )  x.  ( 1  +  ( 1  /  N ) ) ) )
257 basel.k . . . . . 6  |-  K  =  ( H  oF  x.  ( ( NN 
X.  { 1 } )  oF  +  G ) )
258 ovexd 6680 . . . . . . . 8  |-  ( ( T.  /\  n  e.  NN )  ->  (
1  +  ( 1  /  ( ( 2  x.  n )  +  1 ) ) )  e.  _V )
259103, 116, 117, 119, 121offval2 6914 . . . . . . . 8  |-  ( T. 
->  ( ( NN  X.  { 1 } )  oF  +  G
)  =  ( n  e.  NN  |->  ( 1  +  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) ) )
260103, 104, 258, 124, 259offval2 6914 . . . . . . 7  |-  ( T. 
->  ( H  oF  x.  ( ( NN 
X.  { 1 } )  oF  +  G ) )  =  ( n  e.  NN  |->  ( ( ( ( pi ^ 2 )  /  6 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) )  x.  (
1  +  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) ) ) )
261260trud 1493 . . . . . 6  |-  ( H  oF  x.  (
( NN  X.  {
1 } )  oF  +  G ) )  =  ( n  e.  NN  |->  ( ( ( ( pi ^
2 )  /  6
)  x.  ( 1  -  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) )  x.  ( 1  +  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) ) )
262257, 261eqtri 2644 . . . . 5  |-  K  =  ( n  e.  NN  |->  ( ( ( ( pi ^ 2 )  /  6 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) )  x.  (
1  +  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) ) )
263 ovex 6678 . . . . 5  |-  ( ( ( ( pi ^
2 )  /  6
)  x.  ( 1  -  ( 1  /  N ) ) )  x.  ( 1  +  ( 1  /  N
) ) )  e. 
_V
264256, 262, 263fvmpt 6282 . . . 4  |-  ( M  e.  NN  ->  ( K `  M )  =  ( ( ( ( pi ^ 2 )  /  6 )  x.  ( 1  -  ( 1  /  N
) ) )  x.  ( 1  +  ( 1  /  N ) ) ) )
265 peano2cn 10208 . . . . . . . 8  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
26663, 265syl 17 . . . . . . 7  |-  ( M  e.  NN  ->  ( N  +  1 )  e.  CC )
267266, 63, 64divcld 10801 . . . . . 6  |-  ( M  e.  NN  ->  (
( N  +  1 )  /  N )  e.  CC )
268138, 140, 267mulassd 10063 . . . . 5  |-  ( M  e.  NN  ->  (
( ( ( pi
^ 2 )  / 
6 )  x.  (
( 2  x.  M
)  /  N ) )  x.  ( ( N  +  1 )  /  N ) )  =  ( ( ( pi ^ 2 )  /  6 )  x.  ( ( ( 2  x.  M )  /  N )  x.  (
( N  +  1 )  /  N ) ) ) )
26963, 146, 63, 64divdird 10839 . . . . . . 7  |-  ( M  e.  NN  ->  (
( N  +  1 )  /  N )  =  ( ( N  /  N )  +  ( 1  /  N
) ) )
270153oveq1d 6665 . . . . . . 7  |-  ( M  e.  NN  ->  (
( N  /  N
)  +  ( 1  /  N ) )  =  ( 1  +  ( 1  /  N
) ) )
271269, 270eqtr2d 2657 . . . . . 6  |-  ( M  e.  NN  ->  (
1  +  ( 1  /  N ) )  =  ( ( N  +  1 )  /  N ) )
272156, 271oveq12d 6668 . . . . 5  |-  ( M  e.  NN  ->  (
( ( ( pi
^ 2 )  / 
6 )  x.  (
1  -  ( 1  /  N ) ) )  x.  ( 1  +  ( 1  /  N ) ) )  =  ( ( ( ( pi ^ 2 )  /  6 )  x.  ( ( 2  x.  M )  /  N ) )  x.  ( ( N  + 
1 )  /  N
) ) )
273175oveq2d 6666 . . . . . . 7  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  x.  (
( 2  x.  M
)  x.  ( N  +  1 ) ) )  /  ( ( N ^ 2 )  x.  6 ) )  =  ( ( ( pi ^ 2 )  x.  ( ( 2  x.  M )  x.  ( N  +  1 ) ) )  / 
( 6  x.  ( N ^ 2 ) ) ) )
274139, 266mulcld 10060 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( N  +  1 ) )  e.  CC )
275 divmuldiv 10725 . . . . . . . 8  |-  ( ( ( ( pi ^
2 )  e.  CC  /\  ( ( 2  x.  M )  x.  ( N  +  1 ) )  e.  CC )  /\  ( ( ( N ^ 2 )  e.  CC  /\  ( N ^ 2 )  =/=  0 )  /\  (
6  e.  CC  /\  6  =/=  0 ) ) )  ->  ( (
( pi ^ 2 )  /  ( N ^ 2 ) )  x.  ( ( ( 2  x.  M )  x.  ( N  + 
1 ) )  / 
6 ) )  =  ( ( ( pi
^ 2 )  x.  ( ( 2  x.  M )  x.  ( N  +  1 ) ) )  /  (
( N ^ 2 )  x.  6 ) ) )
276178, 274, 181, 183, 275syl22anc 1327 . . . . . . 7  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  /  ( N ^ 2 ) )  x.  ( ( ( 2  x.  M )  x.  ( N  + 
1 ) )  / 
6 ) )  =  ( ( ( pi
^ 2 )  x.  ( ( 2  x.  M )  x.  ( N  +  1 ) ) )  /  (
( N ^ 2 )  x.  6 ) ) )
277 divmuldiv 10725 . . . . . . . 8  |-  ( ( ( ( pi ^
2 )  e.  CC  /\  ( ( 2  x.  M )  x.  ( N  +  1 ) )  e.  CC )  /\  ( ( 6  e.  CC  /\  6  =/=  0 )  /\  (
( N ^ 2 )  e.  CC  /\  ( N ^ 2 )  =/=  0 ) ) )  ->  ( (
( pi ^ 2 )  /  6 )  x.  ( ( ( 2  x.  M )  x.  ( N  + 
1 ) )  / 
( N ^ 2 ) ) )  =  ( ( ( pi
^ 2 )  x.  ( ( 2  x.  M )  x.  ( N  +  1 ) ) )  /  (
6  x.  ( N ^ 2 ) ) ) )
278178, 274, 183, 181, 277syl22anc 1327 . . . . . . 7  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  /  6
)  x.  ( ( ( 2  x.  M
)  x.  ( N  +  1 ) )  /  ( N ^
2 ) ) )  =  ( ( ( pi ^ 2 )  x.  ( ( 2  x.  M )  x.  ( N  +  1 ) ) )  / 
( 6  x.  ( N ^ 2 ) ) ) )
279273, 276, 2783eqtr4d 2666 . . . . . 6  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  /  ( N ^ 2 ) )  x.  ( ( ( 2  x.  M )  x.  ( N  + 
1 ) )  / 
6 ) )  =  ( ( ( pi
^ 2 )  / 
6 )  x.  (
( ( 2  x.  M )  x.  ( N  +  1 ) )  /  ( N ^ 2 ) ) ) )
28075recoscld 14874 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( cos `  (
( k  x.  pi )  /  N ) )  e.  RR )
281280recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( cos `  (
( k  x.  pi )  /  N ) )  e.  CC )
282281sqcld 13006 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( cos `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  e.  CC )
283249, 282, 249, 250divdird 10839 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 )  +  ( ( cos `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  /  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 ) )  =  ( ( ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  /  ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) )  +  ( ( ( cos `  ( ( k  x.  pi )  /  N ) ) ^ 2 )  / 
( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
28475recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( k  x.  pi )  /  N )  e.  CC )
285 sincossq 14906 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  pi )  /  N )  e.  CC  ->  ( (
( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 )  +  ( ( cos `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  =  1 )
286284, 285syl 17 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ 2 )  +  ( ( cos `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  =  1 )
287286oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 )  +  ( ( cos `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  /  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 ) )  =  ( 1  /  ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) ) )
288249, 250dividd 10799 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ 2 )  / 
( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  =  1 )
289222simprd 479 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  0  <  ( cos `  ( ( k  x.  pi )  /  N ) ) )
290289gt0ne0d 10592 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( cos `  (
( k  x.  pi )  /  N ) )  =/=  0 )
291 tanval 14858 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( k  x.  pi )  /  N
)  e.  CC  /\  ( cos `  ( ( k  x.  pi )  /  N ) )  =/=  0 )  -> 
( tan `  (
( k  x.  pi )  /  N ) )  =  ( ( sin `  ( ( k  x.  pi )  /  N
) )  /  ( cos `  ( ( k  x.  pi )  /  N ) ) ) )
292284, 290, 291syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( tan `  (
( k  x.  pi )  /  N ) )  =  ( ( sin `  ( ( k  x.  pi )  /  N
) )  /  ( cos `  ( ( k  x.  pi )  /  N ) ) ) )
293292oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  =  ( ( ( sin `  (
( k  x.  pi )  /  N ) )  /  ( cos `  (
( k  x.  pi )  /  N ) ) ) ^ 2 ) )
294245, 281, 290sqdivd 13021 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( sin `  ( ( k  x.  pi )  /  N ) )  /  ( cos `  (
( k  x.  pi )  /  N ) ) ) ^ 2 )  =  ( ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ 2 )  / 
( ( cos `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
295293, 294eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  =  ( ( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 )  / 
( ( cos `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
296295oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  =  ( 1  / 
( ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  /  ( ( cos `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
297 sqne0 12930 . . . . . . . . . . . . . . . . 17  |-  ( ( cos `  ( ( k  x.  pi )  /  N ) )  e.  CC  ->  (
( ( cos `  (
( k  x.  pi )  /  N ) ) ^ 2 )  =/=  0  <->  ( cos `  (
( k  x.  pi )  /  N ) )  =/=  0 ) )
298281, 297syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( cos `  ( ( k  x.  pi )  /  N ) ) ^ 2 )  =/=  0  <->  ( cos `  (
( k  x.  pi )  /  N ) )  =/=  0 ) )
299290, 298mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( cos `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  =/=  0 )
300249, 282, 250, 299recdivd 10818 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( 1  / 
( ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  /  ( ( cos `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) ) )  =  ( ( ( cos `  (
( k  x.  pi )  /  N ) ) ^ 2 )  / 
( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
30132, 296, 3003eqtrrd 2661 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( cos `  ( ( k  x.  pi )  /  N ) ) ^ 2 )  / 
( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
302288, 301oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 )  / 
( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  +  ( ( ( cos `  ( ( k  x.  pi )  /  N ) ) ^ 2 )  / 
( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )  =  ( 1  +  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) ) )
303283, 287, 3023eqtr3d 2664 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( 1  / 
( ( sin `  (
( k  x.  pi )  /  N ) ) ^ 2 ) )  =  ( 1  +  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) ) )
304 addcom 10222 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  e.  CC )  -> 
( 1  +  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  +  1 ) )
305141, 204, 304sylancr 695 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( 1  +  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  +  1 ) )
306247, 303, 3053eqtrd 2660 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  ( ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  +  1 ) )
307306sumeq2dv 14433 . . . . . . . . 9  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  sum_ k  e.  ( 1 ... M
) ( ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 )  +  1 ) )
308 1cnd 10056 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  1  e.  CC )
3091, 204, 308fsumadd 14470 . . . . . . . . 9  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 )  +  1 )  =  ( sum_ k  e.  ( 1 ... M ) ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  +  sum_ k  e.  ( 1 ... M ) 1 ) )
310 fsumconst 14522 . . . . . . . . . . . 12  |-  ( ( ( 1 ... M
)  e.  Fin  /\  1  e.  CC )  -> 
sum_ k  e.  ( 1 ... M ) 1  =  ( (
# `  ( 1 ... M ) )  x.  1 ) )
3111, 141, 310sylancl 694 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) 1  =  ( ( # `  (
1 ... M ) )  x.  1 ) )
312 nnnn0 11299 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  NN0 )
313 hashfz1 13134 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
314312, 313syl 17 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( # `
 ( 1 ... M ) )  =  M )
315314oveq1d 6665 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( # `  ( 1 ... M ) )  x.  1 )  =  ( M  x.  1 ) )
316 nncn 11028 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  M  e.  CC )
317316mulid1d 10057 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( M  x.  1 )  =  M )
318311, 315, 3173eqtrd 2660 . . . . . . . . . 10  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) 1  =  M )
319201, 318oveq12d 6668 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( sum_ k  e.  ( 1 ... M ) ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  +  sum_ k  e.  ( 1 ... M ) 1 )  =  ( ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) )  /  6
)  +  M ) )
320307, 309, 3193eqtrd 2660 . . . . . . . 8  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  ( ( ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  /  6 )  +  M ) )
321 3cn 11095 . . . . . . . . . . . . 13  |-  3  e.  CC
322321a1i 11 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  3  e.  CC )
323139, 143, 322adddid 10064 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( ( ( 2  x.  M
)  -  1 )  +  3 ) )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  +  ( ( 2  x.  M )  x.  3 ) ) )
324 df-3 11080 . . . . . . . . . . . . . . . . 17  |-  3  =  ( 2  +  1 )
325324oveq1i 6660 . . . . . . . . . . . . . . . 16  |-  ( 3  -  1 )  =  ( ( 2  +  1 )  -  1 )
32647, 141pncan3oi 10297 . . . . . . . . . . . . . . . 16  |-  ( ( 2  +  1 )  -  1 )  =  2
327325, 326, 1613eqtri 2648 . . . . . . . . . . . . . . 15  |-  ( 3  -  1 )  =  ( 1  +  1 )
328327oveq2i 6661 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  M )  +  ( 3  -  1 ) )  =  ( ( 2  x.  M )  +  ( 1  +  1 ) )
329139, 146, 322subadd23d 10414 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  +  3 )  =  ( ( 2  x.  M )  +  ( 3  -  1 ) ) )
330139, 146, 146addassd 10062 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  +  1 )  +  1 )  =  ( ( 2  x.  M )  +  ( 1  +  1 ) ) )
331328, 329, 3303eqtr4a 2682 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  +  3 )  =  ( ( ( 2  x.  M )  +  1 )  +  1 ) )
3323oveq1i 6660 . . . . . . . . . . . . 13  |-  ( N  +  1 )  =  ( ( ( 2  x.  M )  +  1 )  +  1 )
333331, 332syl6eqr 2674 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  +  3 )  =  ( N  + 
1 ) )
334333oveq2d 6666 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( ( ( 2  x.  M
)  -  1 )  +  3 ) )  =  ( ( 2  x.  M )  x.  ( N  +  1 ) ) )
335 2cnd 11093 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  2  e.  CC )
336335, 316, 322mul32d 10246 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  3 )  =  ( ( 2  x.  3 )  x.  M ) )
337 3t2e6 11179 . . . . . . . . . . . . . . 15  |-  ( 3  x.  2 )  =  6
338321, 47mulcomi 10046 . . . . . . . . . . . . . . 15  |-  ( 3  x.  2 )  =  ( 2  x.  3 )
339337, 338eqtr3i 2646 . . . . . . . . . . . . . 14  |-  6  =  ( 2  x.  3 )
340339oveq1i 6660 . . . . . . . . . . . . 13  |-  ( 6  x.  M )  =  ( ( 2  x.  3 )  x.  M
)
341336, 340syl6eqr 2674 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  3 )  =  ( 6  x.  M ) )
342341oveq2d 6666 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  +  ( ( 2  x.  M )  x.  3 ) )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  +  ( 6  x.  M
) ) )
343323, 334, 3423eqtr3d 2664 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( N  +  1 ) )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  +  ( 6  x.  M
) ) )
344343oveq1d 6665 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  x.  ( N  +  1 ) )  /  6 )  =  ( ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  +  ( 6  x.  M ) )  / 
6 ) )
345 mulcl 10020 . . . . . . . . . . 11  |-  ( ( 6  e.  CC  /\  M  e.  CC )  ->  ( 6  x.  M
)  e.  CC )
346173, 316, 345sylancr 695 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
6  x.  M )  e.  CC )
347173a1i 11 . . . . . . . . . 10  |-  ( M  e.  NN  ->  6  e.  CC )
348110a1i 11 . . . . . . . . . 10  |-  ( M  e.  NN  ->  6  =/=  0 )
349179, 346, 347, 348divdird 10839 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) )  +  ( 6  x.  M ) )  /  6 )  =  ( ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 )  +  ( ( 6  x.  M )  /  6
) ) )
350316, 347, 348divcan3d 10806 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( 6  x.  M
)  /  6 )  =  M )
351350oveq2d 6666 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) )  /  6
)  +  ( ( 6  x.  M )  /  6 ) )  =  ( ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 )  +  M ) )
352344, 349, 3513eqtrd 2660 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  x.  ( N  +  1 ) )  /  6 )  =  ( ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 )  +  M ) )
353320, 352eqtr4d 2659 . . . . . . 7  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  ( ( ( 2  x.  M
)  x.  ( N  +  1 ) )  /  6 ) )
354190, 353oveq12d 6668 . . . . . 6  |-  ( M  e.  NN  ->  (
( ( pi  /  N ) ^ 2 )  x.  sum_ k  e.  ( 1 ... M
) ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )  =  ( ( ( pi ^
2 )  /  ( N ^ 2 ) )  x.  ( ( ( 2  x.  M )  x.  ( N  + 
1 ) )  / 
6 ) ) )
355139, 63, 266, 63, 64, 64divmuldivd 10842 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  /  N
)  x.  ( ( N  +  1 )  /  N ) )  =  ( ( ( 2  x.  M )  x.  ( N  + 
1 ) )  / 
( N  x.  N
) ) )
356193oveq2d 6666 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  x.  ( N  +  1 ) )  /  ( N ^ 2 ) )  =  ( ( ( 2  x.  M )  x.  ( N  + 
1 ) )  / 
( N  x.  N
) ) )
357355, 356eqtr4d 2659 . . . . . . 7  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  /  N
)  x.  ( ( N  +  1 )  /  N ) )  =  ( ( ( 2  x.  M )  x.  ( N  + 
1 ) )  / 
( N ^ 2 ) ) )
358357oveq2d 6666 . . . . . 6  |-  ( M  e.  NN  ->  (
( ( pi ^
2 )  /  6
)  x.  ( ( ( 2  x.  M
)  /  N )  x.  ( ( N  +  1 )  /  N ) ) )  =  ( ( ( pi ^ 2 )  /  6 )  x.  ( ( ( 2  x.  M )  x.  ( N  +  1 ) )  /  ( N ^ 2 ) ) ) )
359279, 354, 3583eqtr4d 2666 . . . . 5  |-  ( M  e.  NN  ->  (
( ( pi  /  N ) ^ 2 )  x.  sum_ k  e.  ( 1 ... M
) ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )  =  ( ( ( pi ^
2 )  /  6
)  x.  ( ( ( 2  x.  M
)  /  N )  x.  ( ( N  +  1 )  /  N ) ) ) )
360268, 272, 3593eqtr4d 2666 . . . 4  |-  ( M  e.  NN  ->  (
( ( ( pi
^ 2 )  / 
6 )  x.  (
1  -  ( 1  /  N ) ) )  x.  ( 1  +  ( 1  /  N ) ) )  =  ( ( ( pi  /  N ) ^ 2 )  x. 
sum_ k  e.  ( 1 ... M ) ( ( sin `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) ) )
361225recnd 10068 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC )
3621, 35, 361fsummulc2 14516 . . . 4  |-  ( M  e.  NN  ->  (
( ( pi  /  N ) ^ 2 )  x.  sum_ k  e.  ( 1 ... M
) ( ( sin `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )  =  sum_ k  e.  ( 1 ... M ) ( ( ( pi  /  N ) ^ 2 )  x.  ( ( sin `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 ) ) )
363264, 360, 3623eqtrd 2660 . . 3  |-  ( M  e.  NN  ->  ( K `  M )  =  sum_ k  e.  ( 1 ... M ) ( ( ( pi 
/  N ) ^
2 )  x.  (
( sin `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) ) )
364254, 218, 3633brtr4d 4685 . 2  |-  ( M  e.  NN  ->  ( F `  M )  <_  ( K `  M
) )
365219, 364jca 554 1  |-  ( M  e.  NN  ->  (
( J `  M
)  <_  ( F `  M )  /\  ( F `  M )  <_  ( K `  M
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   _Vcvv 3200   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   6c6 11074   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   (,)cioo 12175   ...cfz 12326    seqcseq 12801   ^cexp 12860    _C cbc 13089   #chash 13117   sum_csu 14416   sincsin 14794   cosccos 14795   tanctan 14796   picpi 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by:  basellem9  24815
  Copyright terms: Public domain W3C validator