Proof of Theorem pellexlem2
| Step | Hyp | Ref
| Expression |
| 1 | | simpl3 1066 |
. . . . . . . . . 10
  
                  
  |
| 2 | 1 | nnred 11035 |
. . . . . . . . 9
  
                  
  |
| 3 | 2 | resqcld 13035 |
. . . . . . . 8
  
                         |
| 4 | 2 | sqge0d 13036 |
. . . . . . . 8
  
                  
      |
| 5 | 3, 4 | absidd 14161 |
. . . . . . 7
  
                                 |
| 6 | 5 | eqcomd 2628 |
. . . . . 6
  
                                 |
| 7 | 6 | oveq2d 6666 |
. . . . 5
  
                                                  
                  |
| 8 | | simpl2 1065 |
. . . . . . . . 9
  
                  
  |
| 9 | 8 | nncnd 11036 |
. . . . . . . 8
  
                  
  |
| 10 | 9 | sqcld 13006 |
. . . . . . 7
  
                         |
| 11 | | simpl1 1064 |
. . . . . . . . 9
  
                  
  |
| 12 | 11 | nncnd 11036 |
. . . . . . . 8
  
                  
  |
| 13 | 1 | nncnd 11036 |
. . . . . . . . 9
  
                  
  |
| 14 | 13 | sqcld 13006 |
. . . . . . . 8
  
                         |
| 15 | 12, 14 | mulcld 10060 |
. . . . . . 7
  
                           |
| 16 | 10, 15 | subcld 10392 |
. . . . . 6
  
                        
        |
| 17 | 1 | nnne0d 11065 |
. . . . . . 7
  
                     |
| 18 | | sqne0 12930 |
. . . . . . . 8
         |
| 19 | 18 | biimpar 502 |
. . . . . . 7
         |
| 20 | 13, 17, 19 | syl2anc 693 |
. . . . . 6
  
                         |
| 21 | 16, 14, 20 | absdivd 14194 |
. . . . 5
  
                            
                                        |
| 22 | 7, 21 | eqtr4d 2659 |
. . . 4
  
                                                  
              |
| 23 | 22 | oveq2d 6666 |
. . 3
  
                                                             
               |
| 24 | 16 | abscld 14175 |
. . . . 5
  
                                     |
| 25 | 24 | recnd 10068 |
. . . 4
  
                                     |
| 26 | 25, 14, 20 | divcan2d 10803 |
. . 3
  
                                                       
         |
| 27 | 10, 15, 14, 20 | divsubdird 10840 |
. . . . . 6
  
                         
                                     |
| 28 | 9, 13, 17 | sqdivd 13021 |
. . . . . . . 8
  
                                     |
| 29 | 28 | eqcomd 2628 |
. . . . . . 7
  
                                     |
| 30 | 11 | nnred 11035 |
. . . . . . . . 9
  
                  
  |
| 31 | 11 | nnnn0d 11351 |
. . . . . . . . . 10
  
                  
  |
| 32 | 31 | nn0ge0d 11354 |
. . . . . . . . 9
  
                  
  |
| 33 | | remsqsqrt 13997 |
. . . . . . . . 9
               |
| 34 | 30, 32, 33 | syl2anc 693 |
. . . . . . . 8
  
                               |
| 35 | 30, 32 | resqrtcld 14156 |
. . . . . . . . . 10
  
                         |
| 36 | 35 | recnd 10068 |
. . . . . . . . 9
  
                         |
| 37 | 36 | sqvald 13005 |
. . . . . . . 8
  
                                       |
| 38 | 12, 14, 20 | divcan4d 10807 |
. . . . . . . 8
  
                                 |
| 39 | 34, 37, 38 | 3eqtr4rd 2667 |
. . . . . . 7
  
                                         |
| 40 | 29, 39 | oveq12d 6668 |
. . . . . 6
  
                                                             |
| 41 | 9, 13, 17 | divcld 10801 |
. . . . . . . 8
  
                       |
| 42 | | subsq 12972 |
. . . . . . . 8
                                             |
| 43 | 41, 36, 42 | syl2anc 693 |
. . . . . . 7
  
                                                       |
| 44 | 41, 36 | addcld 10059 |
. . . . . . . 8
  
                             |
| 45 | 8 | nnred 11035 |
. . . . . . . . . . 11
  
                  
  |
| 46 | 45, 1 | nndivred 11069 |
. . . . . . . . . 10
  
                       |
| 47 | 46, 35 | resubcld 10458 |
. . . . . . . . 9
  
                             |
| 48 | 47 | recnd 10068 |
. . . . . . . 8
  
                             |
| 49 | 44, 48 | mulcomd 10061 |
. . . . . . 7
  
                                                         |
| 50 | 43, 49 | eqtrd 2656 |
. . . . . 6
  
                                                       |
| 51 | 27, 40, 50 | 3eqtrd 2660 |
. . . . 5
  
                         
                               |
| 52 | 51 | fveq2d 6195 |
. . . 4
  
                            
                                    |
| 53 | 52 | oveq2d 6666 |
. . 3
  
                                                                             |
| 54 | 23, 26, 53 | 3eqtr3d 2664 |
. 2
  
                                                                 |
| 55 | 48, 44 | absmuld 14193 |
. . . 4
  
                                                                     |
| 56 | 55 | oveq2d 6666 |
. . 3
  
                                                                                 |
| 57 | 48 | abscld 14175 |
. . . . . 6
  
                                 |
| 58 | 44 | abscld 14175 |
. . . . . 6
  
                                 |
| 59 | 57, 58 | remulcld 10070 |
. . . . 5
  
                                               |
| 60 | 3, 59 | remulcld 10070 |
. . . 4
  
                                                     |
| 61 | | 2nn0 11309 |
. . . . . . . . 9
 |
| 62 | 61 | nn0negzi 11416 |
. . . . . . . 8
  |
| 63 | 62 | a1i 11 |
. . . . . . 7
  
                      |
| 64 | 2, 17, 63 | reexpclzd 13034 |
. . . . . 6
  
                          |
| 65 | 64, 58 | remulcld 10070 |
. . . . 5
  
                                        |
| 66 | 3, 65 | remulcld 10070 |
. . . 4
  
                                              |
| 67 | | 1red 10055 |
. . . . 5
  
                     |
| 68 | | 2re 11090 |
. . . . . . 7
 |
| 69 | 68 | a1i 11 |
. . . . . 6
  
                     |
| 70 | 69, 35 | remulcld 10070 |
. . . . 5
  
                           |
| 71 | 67, 70 | readdcld 10069 |
. . . 4
  
                             |
| 72 | | simpr 477 |
. . . . . 6
  
                                      |
| 73 | 8 | nngt0d 11064 |
. . . . . . . . . . 11
  
                  
  |
| 74 | 1 | nngt0d 11064 |
. . . . . . . . . . 11
  
                  
  |
| 75 | 45, 2, 73, 74 | divgt0d 10959 |
. . . . . . . . . 10
  
                  
    |
| 76 | 11 | nngt0d 11064 |
. . . . . . . . . . 11
  
                  
  |
| 77 | | sqrtgt0 13999 |
. . . . . . . . . . 11
  
      |
| 78 | 30, 76, 77 | syl2anc 693 |
. . . . . . . . . 10
  
                  
      |
| 79 | 46, 35, 75, 78 | addgt0d 10602 |
. . . . . . . . 9
  
                  
          |
| 80 | 79 | gt0ne0d 10592 |
. . . . . . . 8
  
                             |
| 81 | | absgt0 14064 |
. . . . . . . . 9
        
                        |
| 82 | 81 | biimpa 501 |
. . . . . . . 8
                                 |
| 83 | 44, 80, 82 | syl2anc 693 |
. . . . . . 7
  
                  
              |
| 84 | | ltmul1 10873 |
. . . . . . 7
                                                               
                                                |
| 85 | 57, 64, 58, 83, 84 | syl112anc 1330 |
. . . . . 6
  
                                    
                                                |
| 86 | 72, 85 | mpbid 222 |
. . . . 5
  
                                                                  |
| 87 | 2, 17 | sqgt0d 13037 |
. . . . . 6
  
                  
      |
| 88 | | ltmul2 10874 |
. . . . . 6
                                                                                                       
                                                            |
| 89 | 59, 65, 3, 87, 88 | syl112anc 1330 |
. . . . 5
  
                                                                                                                             |
| 90 | 86, 89 | mpbid 222 |
. . . 4
  
                                                                              |
| 91 | 13, 17, 63 | expclzd 13013 |
. . . . . . 7
  
                          |
| 92 | 58 | recnd 10068 |
. . . . . . 7
  
                                 |
| 93 | | mulass 10024 |
. . . . . . . 8
                                                                            |
| 94 | 93 | eqcomd 2628 |
. . . . . . 7
                                                                            |
| 95 | 14, 91, 92, 94 | syl3anc 1326 |
. . . . . 6
  
                                                                       |
| 96 | | expneg 12868 |
. . . . . . . . . 10
 
              |
| 97 | 13, 61, 96 | sylancl 694 |
. . . . . . . . 9
  
                                |
| 98 | 97 | oveq2d 6666 |
. . . . . . . 8
  
                                            |
| 99 | 14, 20 | recidd 10796 |
. . . . . . . 8
  
                                 |
| 100 | 98, 99 | eqtrd 2656 |
. . . . . . 7
  
                                |
| 101 | 100 | oveq1d 6665 |
. . . . . 6
  
                                                            |
| 102 | 92 | mulid2d 10058 |
. . . . . 6
  
                                               |
| 103 | 95, 101, 102 | 3eqtrd 2660 |
. . . . 5
  
                                                          |
| 104 | 41, 36 | addcomd 10238 |
. . . . . . . 8
  
                                     |
| 105 | | ppncan 10323 |
. . . . . . . . . 10
                                           |
| 106 | 105 | eqcomd 2628 |
. . . . . . . . 9
                                           |
| 107 | 36, 36, 41, 106 | syl3anc 1326 |
. . . . . . . 8
  
                                                 |
| 108 | 36, 36 | addcld 10059 |
. . . . . . . . . 10
  
                               |
| 109 | 108, 48 | addcomd 10238 |
. . . . . . . . 9
  
                                                             |
| 110 | | 2times 11145 |
. . . . . . . . . . . 12
                       |
| 111 | 110 | eqcomd 2628 |
. . . . . . . . . . 11
                       |
| 112 | 36, 111 | syl 17 |
. . . . . . . . . 10
  
                                     |
| 113 | 112 | oveq2d 6666 |
. . . . . . . . 9
  
                                                         |
| 114 | 109, 113 | eqtrd 2656 |
. . . . . . . 8
  
                                                         |
| 115 | 104, 107,
114 | 3eqtrd 2660 |
. . . . . . 7
  
                                             |
| 116 | 115 | fveq2d 6195 |
. . . . . 6
  
                                                     |
| 117 | 47, 70 | readdcld 10069 |
. . . . . . . . 9
  
                                     |
| 118 | 117 | recnd 10068 |
. . . . . . . 8
  
                                     |
| 119 | 118 | abscld 14175 |
. . . . . . 7
  
                                         |
| 120 | 70 | recnd 10068 |
. . . . . . . . 9
  
                           |
| 121 | 120 | abscld 14175 |
. . . . . . . 8
  
                               |
| 122 | 57, 121 | readdcld 10069 |
. . . . . . 7
  
                                             |
| 123 | 48, 120 | abstrid 14195 |
. . . . . . 7
  
                                                                 |
| 124 | | 0le2 11111 |
. . . . . . . . . . . 12
 |
| 125 | 124 | a1i 11 |
. . . . . . . . . . 11
  
                  
  |
| 126 | 30, 32 | sqrtge0d 14159 |
. . . . . . . . . . 11
  
                  
      |
| 127 | 69, 35, 125, 126 | mulge0d 10604 |
. . . . . . . . . 10
  
                  
        |
| 128 | 70, 127 | absidd 14161 |
. . . . . . . . 9
  
                                     |
| 129 | 128 | oveq2d 6666 |
. . . . . . . 8
  
                                                                 |
| 130 | 1 | nnsqcld 13029 |
. . . . . . . . . . . . . . 15
  
                         |
| 131 | 130 | nnge1d 11063 |
. . . . . . . . . . . . . 14
  
                  
      |
| 132 | | 0lt1 10550 |
. . . . . . . . . . . . . . . 16
 |
| 133 | 132 | a1i 11 |
. . . . . . . . . . . . . . 15
  
                  
  |
| 134 | | lerec 10906 |
. . . . . . . . . . . . . . 15
                   
           |
| 135 | 67, 133, 3, 87, 134 | syl22anc 1327 |
. . . . . . . . . . . . . 14
  
                       
           |
| 136 | 131, 135 | mpbid 222 |
. . . . . . . . . . . . 13
  
                             |
| 137 | | 1div1e1 10717 |
. . . . . . . . . . . . 13
   |
| 138 | 136, 137 | syl6breq 4694 |
. . . . . . . . . . . 12
  
                           |
| 139 | 97, 138 | eqbrtrd 4675 |
. . . . . . . . . . 11
  
                       
  |
| 140 | 57, 64, 67, 72, 139 | ltletrd 10197 |
. . . . . . . . . 10
  
                                 |
| 141 | 57, 67, 140 | ltled 10185 |
. . . . . . . . 9
  
                                 |
| 142 | 57, 67, 70, 141 | leadd1dd 10641 |
. . . . . . . 8
  
                                                 |
| 143 | 129, 142 | eqbrtrd 4675 |
. . . . . . 7
  
                                          
          |
| 144 | 119, 122,
71, 123, 143 | letrd 10194 |
. . . . . 6
  
                                                 |
| 145 | 116, 144 | eqbrtrd 4675 |
. . . . 5
  
                                         |
| 146 | 103, 145 | eqbrtrd 4675 |
. . . 4
  
                                                      |
| 147 | 60, 66, 71, 90, 146 | ltletrd 10197 |
. . 3
  
                                                             |
| 148 | 56, 147 | eqbrtrd 4675 |
. 2
  
                                                         |
| 149 | 54, 148 | eqbrtrd 4675 |
1
  
                                             |