MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnprm Structured version   Visualization version   Unicode version

Theorem expnprm 15606
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is irrational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
expnprm  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( A ^ N
)  e.  Prime )

Proof of Theorem expnprm
StepHypRef Expression
1 eluz2b3 11762 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
21simprbi 480 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
32adantl 482 . 2  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  =/=  1 )
4 eluzelz 11697 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
54ad2antlr 763 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  e.  ZZ )
6 simpr 477 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  e. 
Prime )
7 simpll 790 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  A  e.  QQ )
8 prmnn 15388 . . . . . . . . . . . 12  |-  ( ( A ^ N )  e.  Prime  ->  ( A ^ N )  e.  NN )
98adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  e.  NN )
109nnne0d 11065 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  =/=  0 )
11 eluz2nn 11726 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
1211ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  e.  NN )
13120expd 13024 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
0 ^ N )  =  0 )
1410, 13neeqtrrd 2868 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  =/=  ( 0 ^ N
) )
15 oveq1 6657 . . . . . . . . . 10  |-  ( A  =  0  ->  ( A ^ N )  =  ( 0 ^ N
) )
1615necon3i 2826 . . . . . . . . 9  |-  ( ( A ^ N )  =/=  ( 0 ^ N )  ->  A  =/=  0 )
1714, 16syl 17 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  A  =/=  0 )
18 pcqcl 15561 . . . . . . . 8  |-  ( ( ( A ^ N
)  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( ( A ^ N )  pCnt  A
)  e.  ZZ )
196, 7, 17, 18syl12anc 1324 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  A )  e.  ZZ )
20 dvdsmul1 15003 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( A ^ N )  pCnt  A
)  e.  ZZ )  ->  N  ||  ( N  x.  ( ( A ^ N )  pCnt  A ) ) )
215, 19, 20syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  ||  ( N  x.  (
( A ^ N
)  pCnt  A )
) )
229nncnd 11036 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  e.  CC )
2322exp1d 13003 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
) ^ 1 )  =  ( A ^ N ) )
2423oveq2d 6666 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  ( ( A ^ N ) ^
1 ) )  =  ( ( A ^ N )  pCnt  ( A ^ N ) ) )
25 1z 11407 . . . . . . . 8  |-  1  e.  ZZ
26 pcid 15577 . . . . . . . 8  |-  ( ( ( A ^ N
)  e.  Prime  /\  1  e.  ZZ )  ->  (
( A ^ N
)  pCnt  ( ( A ^ N ) ^
1 ) )  =  1 )
276, 25, 26sylancl 694 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  ( ( A ^ N ) ^
1 ) )  =  1 )
28 pcexp 15564 . . . . . . . 8  |-  ( ( ( A ^ N
)  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  (
( A ^ N
)  pCnt  ( A ^ N ) )  =  ( N  x.  (
( A ^ N
)  pCnt  A )
) )
296, 7, 17, 5, 28syl121anc 1331 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  ( A ^ N ) )  =  ( N  x.  (
( A ^ N
)  pCnt  A )
) )
3024, 27, 293eqtr3rd 2665 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( N  x.  ( ( A ^ N )  pCnt  A ) )  =  1 )
3121, 30breqtrd 4679 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  ||  1 )
3231ex 450 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A ^ N )  e.  Prime  ->  N  ||  1 ) )
3311adantl 482 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  NN )
3433nnnn0d 11351 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  NN0 )
35 dvds1 15041 . . . . 5  |-  ( N  e.  NN0  ->  ( N 
||  1  <->  N  = 
1 ) )
3634, 35syl 17 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  ||  1  <->  N  =  1 ) )
3732, 36sylibd 229 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A ^ N )  e.  Prime  ->  N  =  1 ) )
3837necon3ad 2807 . 2  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  =/=  1  ->  -.  ( A ^ N )  e.  Prime ) )
393, 38mpd 15 1  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( A ^ N
)  e.  Prime )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   QQcq 11788   ^cexp 12860    || cdvds 14983   Primecprime 15385    pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542
This theorem is referenced by:  rplogsumlem2  25174
  Copyright terms: Public domain W3C validator