MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddprmdvds Structured version   Visualization version   Unicode version

Theorem oddprmdvds 15607
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
Assertion
Ref Expression
oddprmdvds  |-  ( ( K  e.  NN  /\  -.  E. n  e.  NN0  K  =  ( 2 ^ n ) )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
Distinct variable group:    n, K, p

Proof of Theorem oddprmdvds
Dummy variables  m  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 15405 . . . 4  |-  2  e.  Prime
2 pcndvds2 15572 . . . 4  |-  ( ( 2  e.  Prime  /\  K  e.  NN )  ->  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )
31, 2mpan 706 . . 3  |-  ( K  e.  NN  ->  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )
4 pcdvds 15568 . . . 4  |-  ( ( 2  e.  Prime  /\  K  e.  NN )  ->  (
2 ^ ( 2 
pCnt  K ) )  ||  K )
51, 4mpan 706 . . 3  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  ||  K )
6 id 22 . . . . . . . 8  |-  ( K  e.  NN  ->  K  e.  NN )
7 2nn 11185 . . . . . . . . . 10  |-  2  e.  NN
87a1i 11 . . . . . . . . 9  |-  ( K  e.  NN  ->  2  e.  NN )
91a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN  ->  2  e.  Prime )
109, 6pccld 15555 . . . . . . . . 9  |-  ( K  e.  NN  ->  (
2  pCnt  K )  e.  NN0 )
118, 10nnexpcld 13030 . . . . . . . 8  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e.  NN )
126, 11jca 554 . . . . . . 7  |-  ( K  e.  NN  ->  ( K  e.  NN  /\  (
2 ^ ( 2 
pCnt  K ) )  e.  NN ) )
13 nndivdvds 14989 . . . . . . 7  |-  ( ( K  e.  NN  /\  ( 2 ^ (
2  pCnt  K )
)  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K 
<->  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN ) )
1412, 13syl 17 . . . . . 6  |-  ( K  e.  NN  ->  (
( 2 ^ (
2  pCnt  K )
)  ||  K  <->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN ) )
1514adantr 481 . . . . 5  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K 
<->  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN ) )
16 elnn1uz2 11765 . . . . . . 7  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  NN  <->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  \/  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  ( ZZ>= `  2 )
) )
17 nncn 11028 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  K  e.  CC )
18 nncn 11028 . . . . . . . . . . . . . . 15  |-  ( ( 2 ^ ( 2 
pCnt  K ) )  e.  NN  ->  ( 2 ^ ( 2  pCnt 
K ) )  e.  CC )
19 nnne0 11053 . . . . . . . . . . . . . . 15  |-  ( ( 2 ^ ( 2 
pCnt  K ) )  e.  NN  ->  ( 2 ^ ( 2  pCnt 
K ) )  =/=  0 )
2018, 19jca 554 . . . . . . . . . . . . . 14  |-  ( ( 2 ^ ( 2 
pCnt  K ) )  e.  NN  ->  ( (
2 ^ ( 2 
pCnt  K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) )  =/=  0 ) )
2111, 20syl 17 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  (
( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
)  =/=  0 ) )
22 3anass 1042 . . . . . . . . . . . . 13  |-  ( ( K  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
)  =/=  0 )  <-> 
( K  e.  CC  /\  ( ( 2 ^ ( 2  pCnt  K
) )  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
)  =/=  0 ) ) )
2317, 21, 22sylanbrc 698 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  ( K  e.  CC  /\  (
2 ^ ( 2 
pCnt  K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) )  =/=  0 ) )
2423adantr 481 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( K  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) )  =/=  0 ) )
25 diveq1 10718 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
)  =/=  0 )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  <->  K  =  (
2 ^ ( 2 
pCnt  K ) ) ) )
2624, 25syl 17 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  <->  K  =  (
2 ^ ( 2 
pCnt  K ) ) ) )
2710adantr 481 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  ( 2  pCnt 
K )  e.  NN0 )
28 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( 2  pCnt 
K )  ->  (
2 ^ n )  =  ( 2 ^ ( 2  pCnt  K
) ) )
2928eqeq2d 2632 . . . . . . . . . . . . . . 15  |-  ( n  =  ( 2  pCnt 
K )  ->  ( K  =  ( 2 ^ n )  <->  K  =  ( 2 ^ (
2  pCnt  K )
) ) )
3029adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  /\  n  =  ( 2  pCnt  K )
)  ->  ( K  =  ( 2 ^ n )  <->  K  =  ( 2 ^ (
2  pCnt  K )
) ) )
31 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  K  =  ( 2 ^ ( 2 
pCnt  K ) ) )
3227, 30, 31rspcedvd 3317 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  E. n  e.  NN0  K  =  ( 2 ^ n ) )
3332ex 450 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  ( K  =  ( 2 ^ ( 2  pCnt 
K ) )  ->  E. n  e.  NN0  K  =  ( 2 ^ n ) ) )
34 pm2.24 121 . . . . . . . . . . . 12  |-  ( E. n  e.  NN0  K  =  ( 2 ^ n )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
3533, 34syl6 35 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  ( K  =  ( 2 ^ ( 2  pCnt 
K ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3635adantr 481 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( K  =  ( 2 ^ (
2  pCnt  K )
)  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3726, 36sylbid 230 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3837com12 32 . . . . . . . 8  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  =  1  ->  (
( K  e.  NN  /\ 
-.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
39 exprmfct 15416 . . . . . . . . 9  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  ( ZZ>= `  2
)  ->  E. q  e.  Prime  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )
40 breq1 4656 . . . . . . . . . . . . . . . . 17  |-  ( q  =  2  ->  (
q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) ) ) )
4140biimpcd 239 . . . . . . . . . . . . . . . 16  |-  ( q 
||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  (
q  =  2  -> 
2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) ) )
4241adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( q  =  2  ->  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) ) ) )
4342necon3bd 2808 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  q  =/=  2
) )
4443ex 450 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  q  =/=  2
) ) )
45 prmnn 15388 . . . . . . . . . . . . . . 15  |-  ( q  e.  Prime  ->  q  e.  NN )
465, 14mpbid 222 . . . . . . . . . . . . . . 15  |-  ( K  e.  NN  ->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN )
47 nndivides 14990 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  NN  /\  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) ) ) )
4845, 46, 47syl2anr 495 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) ) ) )
49 eqcom 2629 . . . . . . . . . . . . . . . . 17  |-  ( ( m  x.  q )  =  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  <->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
) )
5017adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  NN  /\  q  e.  Prime )  ->  K  e.  CC )
5150adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  K  e.  CC )
52 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  m  e.  NN )
5345adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
q  e.  NN )
5453adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  NN )
5552, 54nnmulcld 11068 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( m  x.  q )  e.  NN )
5655nncnd 11036 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( m  x.  q )  e.  CC )
5711adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( 2 ^ (
2  pCnt  K )
)  e.  NN )
5857adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  NN )
5958, 20syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) )  =/=  0 ) )
6051, 56, 593jca 1242 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( K  e.  CC  /\  ( m  x.  q )  e.  CC  /\  ( ( 2 ^ ( 2 
pCnt  K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) )  =/=  0 ) ) )
61 divmul 10688 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  CC  /\  ( m  x.  q
)  e.  CC  /\  ( ( 2 ^ ( 2  pCnt  K
) )  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
)  =/=  0 ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
)  <->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) )  =  K ) )
6260, 61syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
)  <->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) )  =  K ) )
6349, 62syl5bb 272 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( m  x.  q )  =  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  <-> 
( ( 2 ^ ( 2  pCnt  K
) )  x.  (
m  x.  q ) )  =  K ) )
64 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
q  e.  Prime )
6564adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  Prime )
6665anim1i 592 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
q  e.  Prime  /\  q  =/=  2 ) )
67 eldifsn 4317 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( q  e.  ( Prime  \  {
2 } )  <->  ( q  e.  Prime  /\  q  =/=  2 ) )
6866, 67sylibr 224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  e.  ( Prime  \  { 2 } ) )
6968adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  e.  ( Prime  \  { 2 } ) )
70 breq1 4656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  q  ->  (
p  ||  K  <->  q  ||  K ) )
7170adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2
)  /\  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  =  K )  /\  p  =  q )  ->  (
p  ||  K  <->  q  ||  K ) )
7258, 52nnmulcld 11068 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  e.  NN )
7372nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  e.  ZZ )
7445nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( q  e.  Prime  ->  q  e.  ZZ )
7574adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
q  e.  ZZ )
7675adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  ZZ )
7773, 76jca 554 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( ( 2 ^ ( 2 
pCnt  K ) )  x.  m )  e.  ZZ  /\  q  e.  ZZ ) )
7877adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  e.  ZZ  /\  q  e.  ZZ )
)
79 dvdsmul2 15004 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  e.  ZZ  /\  q  e.  ZZ )  ->  q  ||  ( ( ( 2 ^ (
2  pCnt  K )
)  x.  m )  x.  q ) )
8078, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  ||  ( ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  x.  q
) )
81 2nn0 11309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  2  e.  NN0
8281a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( K  e.  NN  ->  2  e.  NN0 )
8382, 10nn0expcld 13031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e. 
NN0 )
8483adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( 2 ^ (
2  pCnt  K )
)  e.  NN0 )
8584adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  NN0 )
8685nn0cnd 11353 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  CC )
87 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  e.  NN  ->  m  e.  CC )
8887adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  m  e.  CC )
8945nncnd 11036 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( q  e.  Prime  ->  q  e.  CC )
9089adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
q  e.  CC )
9190adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  CC )
9286, 88, 913jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  m  e.  CC  /\  q  e.  CC ) )
9392adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  m  e.  CC  /\  q  e.  CC ) )
94 mulass 10024 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  m  e.  CC  /\  q  e.  CC )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  x.  q )  =  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) ) )
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  x.  q )  =  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) ) )
9680, 95breqtrd 4679 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  ||  ( ( 2 ^ ( 2  pCnt  K
) )  x.  (
m  x.  q ) ) )
9796adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  ||  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) ) )
98 breq2 4657 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K  ->  (
q  ||  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  <->  q  ||  K ) )
9998adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
( q  ||  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  <-> 
q  ||  K )
)
10097, 99mpbid 222 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  ||  K )
10169, 71, 100rspcedvd 3317 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
102101a1d 25 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
103102exp31 630 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( q  =/=  2  ->  ( (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
104103com23 86 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( ( 2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  =  K  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
10563, 104sylbid 230 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( m  x.  q )  =  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
106105rexlimdva 3031 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
10748, 106sylbid 230 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
10844, 107syldd 72 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
109108rexlimdva 3031 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  ( E. q  e.  Prime  q 
||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  ( -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
110109com12 32 . . . . . . . . . 10  |-  ( E. q  e.  Prime  q  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( K  e.  NN  ->  ( -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
111110impd 447 . . . . . . . . 9  |-  ( E. q  e.  Prime  q  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
11239, 111syl 17 . . . . . . . 8  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  ( ZZ>= `  2
)  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
11338, 112jaoi 394 . . . . . . 7  |-  ( ( ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  =  1  \/  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  ( ZZ>= `  2 )
)  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
11416, 113sylbi 207 . . . . . 6  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  NN  ->  (
( K  e.  NN  /\ 
-.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
115114com12 32 . . . . 5  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
11615, 115sylbid 230 . . . 4  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
117116ex 450 . . 3  |-  ( K  e.  NN  ->  ( -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( ( 2 ^ ( 2  pCnt  K
) )  ||  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
1183, 5, 117mp2d 49 . 2  |-  ( K  e.  NN  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
119118imp 445 1  |-  ( ( K  e.  NN  /\  -.  E. n  e.  NN0  K  =  ( 2 ^ n ) )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ^cexp 12860    || cdvds 14983   Primecprime 15385    pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542
This theorem is referenced by:  2pwp1prm  41503
  Copyright terms: Public domain W3C validator