Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem7 Structured version   Visualization version   Unicode version

Theorem fourierdlem7 40331
Description: The difference between a point and it's periodic image in the interval, is decreasing. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem7.a  |-  ( ph  ->  A  e.  RR )
fourierdlem7.b  |-  ( ph  ->  B  e.  RR )
fourierdlem7.altb  |-  ( ph  ->  A  <  B )
fourierdlem7.t  |-  T  =  ( B  -  A
)
fourierdlem7.e  |-  E  =  ( x  e.  RR  |->  ( x  +  (
( |_ `  (
( B  -  x
)  /  T ) )  x.  T ) ) )
fourierdlem7.x  |-  ( ph  ->  X  e.  RR )
fourierdlem7.y  |-  ( ph  ->  Y  e.  RR )
fourierdlem7.xlty  |-  ( ph  ->  X  <_  Y )
Assertion
Ref Expression
fourierdlem7  |-  ( ph  ->  ( ( E `  Y )  -  Y
)  <_  ( ( E `  X )  -  X ) )
Distinct variable groups:    x, B    x, T    x, X    x, Y    ph, x
Allowed substitution hints:    A( x)    E( x)

Proof of Theorem fourierdlem7
StepHypRef Expression
1 fourierdlem7.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
2 fourierdlem7.y . . . . . 6  |-  ( ph  ->  Y  e.  RR )
31, 2resubcld 10458 . . . . 5  |-  ( ph  ->  ( B  -  Y
)  e.  RR )
4 fourierdlem7.t . . . . . 6  |-  T  =  ( B  -  A
)
5 fourierdlem7.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
61, 5resubcld 10458 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  e.  RR )
74, 6syl5eqel 2705 . . . . 5  |-  ( ph  ->  T  e.  RR )
8 fourierdlem7.altb . . . . . . . 8  |-  ( ph  ->  A  <  B )
95, 1posdifd 10614 . . . . . . . 8  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
108, 9mpbid 222 . . . . . . 7  |-  ( ph  ->  0  <  ( B  -  A ) )
1110, 4syl6breqr 4695 . . . . . 6  |-  ( ph  ->  0  <  T )
1211gt0ne0d 10592 . . . . 5  |-  ( ph  ->  T  =/=  0 )
133, 7, 12redivcld 10853 . . . 4  |-  ( ph  ->  ( ( B  -  Y )  /  T
)  e.  RR )
14 fourierdlem7.x . . . . . 6  |-  ( ph  ->  X  e.  RR )
151, 14resubcld 10458 . . . . 5  |-  ( ph  ->  ( B  -  X
)  e.  RR )
1615, 7, 12redivcld 10853 . . . 4  |-  ( ph  ->  ( ( B  -  X )  /  T
)  e.  RR )
177, 11elrpd 11869 . . . . 5  |-  ( ph  ->  T  e.  RR+ )
18 fourierdlem7.xlty . . . . . 6  |-  ( ph  ->  X  <_  Y )
1914, 2, 1, 18lesub2dd 10644 . . . . 5  |-  ( ph  ->  ( B  -  Y
)  <_  ( B  -  X ) )
203, 15, 17, 19lediv1dd 11930 . . . 4  |-  ( ph  ->  ( ( B  -  Y )  /  T
)  <_  ( ( B  -  X )  /  T ) )
21 flwordi 12613 . . . 4  |-  ( ( ( ( B  -  Y )  /  T
)  e.  RR  /\  ( ( B  -  X )  /  T
)  e.  RR  /\  ( ( B  -  Y )  /  T
)  <_  ( ( B  -  X )  /  T ) )  -> 
( |_ `  (
( B  -  Y
)  /  T ) )  <_  ( |_ `  ( ( B  -  X )  /  T
) ) )
2213, 16, 20, 21syl3anc 1326 . . 3  |-  ( ph  ->  ( |_ `  (
( B  -  Y
)  /  T ) )  <_  ( |_ `  ( ( B  -  X )  /  T
) ) )
2313flcld 12599 . . . . 5  |-  ( ph  ->  ( |_ `  (
( B  -  Y
)  /  T ) )  e.  ZZ )
2423zred 11482 . . . 4  |-  ( ph  ->  ( |_ `  (
( B  -  Y
)  /  T ) )  e.  RR )
2516flcld 12599 . . . . 5  |-  ( ph  ->  ( |_ `  (
( B  -  X
)  /  T ) )  e.  ZZ )
2625zred 11482 . . . 4  |-  ( ph  ->  ( |_ `  (
( B  -  X
)  /  T ) )  e.  RR )
2724, 26, 17lemul1d 11915 . . 3  |-  ( ph  ->  ( ( |_ `  ( ( B  -  Y )  /  T
) )  <_  ( |_ `  ( ( B  -  X )  /  T ) )  <->  ( ( |_ `  ( ( B  -  Y )  /  T ) )  x.  T )  <_  (
( |_ `  (
( B  -  X
)  /  T ) )  x.  T ) ) )
2822, 27mpbid 222 . 2  |-  ( ph  ->  ( ( |_ `  ( ( B  -  Y )  /  T
) )  x.  T
)  <_  ( ( |_ `  ( ( B  -  X )  /  T ) )  x.  T ) )
29 fourierdlem7.e . . . . . 6  |-  E  =  ( x  e.  RR  |->  ( x  +  (
( |_ `  (
( B  -  x
)  /  T ) )  x.  T ) ) )
3029a1i 11 . . . . 5  |-  ( ph  ->  E  =  ( x  e.  RR  |->  ( x  +  ( ( |_
`  ( ( B  -  x )  /  T ) )  x.  T ) ) ) )
31 id 22 . . . . . . 7  |-  ( x  =  Y  ->  x  =  Y )
32 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  Y  ->  ( B  -  x )  =  ( B  -  Y ) )
3332oveq1d 6665 . . . . . . . . 9  |-  ( x  =  Y  ->  (
( B  -  x
)  /  T )  =  ( ( B  -  Y )  /  T ) )
3433fveq2d 6195 . . . . . . . 8  |-  ( x  =  Y  ->  ( |_ `  ( ( B  -  x )  /  T ) )  =  ( |_ `  (
( B  -  Y
)  /  T ) ) )
3534oveq1d 6665 . . . . . . 7  |-  ( x  =  Y  ->  (
( |_ `  (
( B  -  x
)  /  T ) )  x.  T )  =  ( ( |_
`  ( ( B  -  Y )  /  T ) )  x.  T ) )
3631, 35oveq12d 6668 . . . . . 6  |-  ( x  =  Y  ->  (
x  +  ( ( |_ `  ( ( B  -  x )  /  T ) )  x.  T ) )  =  ( Y  +  ( ( |_ `  ( ( B  -  Y )  /  T
) )  x.  T
) ) )
3736adantl 482 . . . . 5  |-  ( (
ph  /\  x  =  Y )  ->  (
x  +  ( ( |_ `  ( ( B  -  x )  /  T ) )  x.  T ) )  =  ( Y  +  ( ( |_ `  ( ( B  -  Y )  /  T
) )  x.  T
) ) )
3824, 7remulcld 10070 . . . . . 6  |-  ( ph  ->  ( ( |_ `  ( ( B  -  Y )  /  T
) )  x.  T
)  e.  RR )
392, 38readdcld 10069 . . . . 5  |-  ( ph  ->  ( Y  +  ( ( |_ `  (
( B  -  Y
)  /  T ) )  x.  T ) )  e.  RR )
4030, 37, 2, 39fvmptd 6288 . . . 4  |-  ( ph  ->  ( E `  Y
)  =  ( Y  +  ( ( |_
`  ( ( B  -  Y )  /  T ) )  x.  T ) ) )
4140oveq1d 6665 . . 3  |-  ( ph  ->  ( ( E `  Y )  -  Y
)  =  ( ( Y  +  ( ( |_ `  ( ( B  -  Y )  /  T ) )  x.  T ) )  -  Y ) )
422recnd 10068 . . . 4  |-  ( ph  ->  Y  e.  CC )
4338recnd 10068 . . . 4  |-  ( ph  ->  ( ( |_ `  ( ( B  -  Y )  /  T
) )  x.  T
)  e.  CC )
4442, 43pncan2d 10394 . . 3  |-  ( ph  ->  ( ( Y  +  ( ( |_ `  ( ( B  -  Y )  /  T
) )  x.  T
) )  -  Y
)  =  ( ( |_ `  ( ( B  -  Y )  /  T ) )  x.  T ) )
4541, 44eqtrd 2656 . 2  |-  ( ph  ->  ( ( E `  Y )  -  Y
)  =  ( ( |_ `  ( ( B  -  Y )  /  T ) )  x.  T ) )
46 id 22 . . . . . . 7  |-  ( x  =  X  ->  x  =  X )
47 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  X  ->  ( B  -  x )  =  ( B  -  X ) )
4847oveq1d 6665 . . . . . . . . 9  |-  ( x  =  X  ->  (
( B  -  x
)  /  T )  =  ( ( B  -  X )  /  T ) )
4948fveq2d 6195 . . . . . . . 8  |-  ( x  =  X  ->  ( |_ `  ( ( B  -  x )  /  T ) )  =  ( |_ `  (
( B  -  X
)  /  T ) ) )
5049oveq1d 6665 . . . . . . 7  |-  ( x  =  X  ->  (
( |_ `  (
( B  -  x
)  /  T ) )  x.  T )  =  ( ( |_
`  ( ( B  -  X )  /  T ) )  x.  T ) )
5146, 50oveq12d 6668 . . . . . 6  |-  ( x  =  X  ->  (
x  +  ( ( |_ `  ( ( B  -  x )  /  T ) )  x.  T ) )  =  ( X  +  ( ( |_ `  ( ( B  -  X )  /  T
) )  x.  T
) ) )
5251adantl 482 . . . . 5  |-  ( (
ph  /\  x  =  X )  ->  (
x  +  ( ( |_ `  ( ( B  -  x )  /  T ) )  x.  T ) )  =  ( X  +  ( ( |_ `  ( ( B  -  X )  /  T
) )  x.  T
) ) )
5326, 7remulcld 10070 . . . . . 6  |-  ( ph  ->  ( ( |_ `  ( ( B  -  X )  /  T
) )  x.  T
)  e.  RR )
5414, 53readdcld 10069 . . . . 5  |-  ( ph  ->  ( X  +  ( ( |_ `  (
( B  -  X
)  /  T ) )  x.  T ) )  e.  RR )
5530, 52, 14, 54fvmptd 6288 . . . 4  |-  ( ph  ->  ( E `  X
)  =  ( X  +  ( ( |_
`  ( ( B  -  X )  /  T ) )  x.  T ) ) )
5655oveq1d 6665 . . 3  |-  ( ph  ->  ( ( E `  X )  -  X
)  =  ( ( X  +  ( ( |_ `  ( ( B  -  X )  /  T ) )  x.  T ) )  -  X ) )
5714recnd 10068 . . . 4  |-  ( ph  ->  X  e.  CC )
5853recnd 10068 . . . 4  |-  ( ph  ->  ( ( |_ `  ( ( B  -  X )  /  T
) )  x.  T
)  e.  CC )
5957, 58pncan2d 10394 . . 3  |-  ( ph  ->  ( ( X  +  ( ( |_ `  ( ( B  -  X )  /  T
) )  x.  T
) )  -  X
)  =  ( ( |_ `  ( ( B  -  X )  /  T ) )  x.  T ) )
6056, 59eqtrd 2656 . 2  |-  ( ph  ->  ( ( E `  X )  -  X
)  =  ( ( |_ `  ( ( B  -  X )  /  T ) )  x.  T ) )
6128, 45, 603brtr4d 4685 1  |-  ( ph  ->  ( ( E `  Y )  -  Y
)  <_  ( ( E `  X )  -  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   |_cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593
This theorem is referenced by:  fourierdlem63  40386
  Copyright terms: Public domain W3C validator