MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzm1 Structured version   Visualization version   Unicode version

Theorem fzm1 12420
Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzm1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )

Proof of Theorem fzm1
StepHypRef Expression
1 oveq1 6657 . . . . . . 7  |-  ( N  =  M  ->  ( N ... N )  =  ( M ... N
) )
21eleq2d 2687 . . . . . 6  |-  ( N  =  M  ->  ( K  e.  ( N ... N )  <->  K  e.  ( M ... N ) ) )
3 elfz1eq 12352 . . . . . 6  |-  ( K  e.  ( N ... N )  ->  K  =  N )
42, 3syl6bir 244 . . . . 5  |-  ( N  =  M  ->  ( K  e.  ( M ... N )  ->  K  =  N ) )
5 olc 399 . . . . 5  |-  ( K  =  N  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) )
64, 5syl6 35 . . . 4  |-  ( N  =  M  ->  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
76adantl 482 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
8 noel 3919 . . . . . 6  |-  -.  K  e.  (/)
9 eluzelz 11697 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
109adantr 481 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  N  e.  ZZ )
1110zred 11482 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  N  e.  RR )
1211ltm1d 10956 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  <  N )
13 breq2 4657 . . . . . . . . . 10  |-  ( N  =  M  ->  (
( N  -  1 )  <  N  <->  ( N  -  1 )  < 
M ) )
1413adantl 482 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( N  -  1 )  <  N  <->  ( N  -  1 )  < 
M ) )
1512, 14mpbid 222 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  <  M )
16 eluzel2 11692 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1716adantr 481 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  M  e.  ZZ )
18 1zzd 11408 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  1  e.  ZZ )
1910, 18zsubcld 11487 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  e.  ZZ )
20 fzn 12357 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( ( N  -  1 )  < 
M  <->  ( M ... ( N  -  1
) )  =  (/) ) )
2117, 19, 20syl2anc 693 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( N  -  1 )  <  M  <->  ( M ... ( N  -  1 ) )  =  (/) ) )
2215, 21mpbid 222 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( M ... ( N  - 
1 ) )  =  (/) )
2322eleq2d 2687 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... ( N  -  1 ) )  <->  K  e.  (/) ) )
248, 23mtbiri 317 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  -.  K  e.  ( M ... ( N  -  1 ) ) )
2524pm2.21d 118 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... ( N  -  1 ) )  ->  K  e.  ( M ... N
) ) )
26 eluzfz2 12349 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
2726ad2antrr 762 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  N  e.  ( M ... N ) )
28 eleq1 2689 . . . . . . 7  |-  ( K  =  N  ->  ( K  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
2928adantl 482 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  ( K  e.  ( M ... N
)  <->  N  e.  ( M ... N ) ) )
3027, 29mpbird 247 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  K  e.  ( M ... N ) )
3130ex 450 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  =  N  ->  K  e.  ( M ... N ) ) )
3225, 31jaod 395 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N )  ->  K  e.  ( M ... N ) ) )
337, 32impbid 202 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... N )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
34 elfzp1 12391 . . . 4  |-  ( ( N  -  1 )  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... (
( N  -  1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  - 
1 )  +  1 ) ) ) )
3534adantl 482 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... ( ( N  - 
1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  - 
1 )  +  1 ) ) ) )
369adantr 481 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  N  e.  ZZ )
3736zcnd 11483 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  N  e.  CC )
38 npcan1 10455 . . . . . 6  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
3937, 38syl 17 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  (
( N  -  1 )  +  1 )  =  N )
4039oveq2d 6666 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( M ... ( ( N  -  1 )  +  1 ) )  =  ( M ... N
) )
4140eleq2d 2687 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... ( ( N  - 
1 )  +  1 ) )  <->  K  e.  ( M ... N ) ) )
4239eqeq2d 2632 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  =  ( ( N  -  1 )  +  1 )  <->  K  =  N ) )
4342orbi2d 738 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  (
( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  -  1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
4435, 41, 433bitr3d 298 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... N )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
45 uzm1 11718 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  ( N  -  1 )  e.  ( ZZ>= `  M
) ) )
4633, 44, 45mpjaodan 827 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  bcpasc  13108  phibndlem  15475  lgsdir2lem2  25051  submateqlem2  29874  poimirlem14  33423  poimirlem23  33432  poimirlem25  33434  poimirlem27  33436  acongeq  37550  jm2.26lem3  37568
  Copyright terms: Public domain W3C validator