MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoopnst Structured version   Visualization version   Unicode version

Theorem icoopnst 22738
Description: A half-open interval starting at  A is open in the closed interval from  A to  B. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
icoopnst.1  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
Assertion
Ref Expression
icoopnst  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  ->  ( A [,) C )  e.  J
) )

Proof of Theorem icoopnst
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 iooretop 22569 . . . . 5  |-  ( ( A  -  1 ) (,) C )  e.  ( topGen `  ran  (,) )
2 simp1 1061 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  e.  RR )
32a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  e.  RR ) )
4 ltm1 10863 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  ( A  -  1 )  <  A )
54adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( A  -  1 )  <  A )
6 peano2rem 10348 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
76adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( A  -  1 )  e.  RR )
8 ltletr 10129 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  -  1 )  e.  RR  /\  A  e.  RR  /\  v  e.  RR )  ->  (
( ( A  - 
1 )  <  A  /\  A  <_  v )  ->  ( A  - 
1 )  <  v
) )
983expb 1266 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  -  1 )  e.  RR  /\  ( A  e.  RR  /\  v  e.  RR ) )  ->  ( (
( A  -  1 )  <  A  /\  A  <_  v )  -> 
( A  -  1 )  <  v ) )
107, 9mpancom 703 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( ( ( A  -  1 )  < 
A  /\  A  <_  v )  ->  ( A  -  1 )  < 
v ) )
115, 10mpand 711 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( A  <_  v  ->  ( A  -  1 )  <  v ) )
1211impr 649 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( v  e.  RR  /\  A  <_  v )
)  ->  ( A  -  1 )  < 
v )
13123adantr3 1222 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <  C ) )  ->  ( A  - 
1 )  <  v
)
1413ex 450 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
( v  e.  RR  /\  A  <_  v  /\  v  <  C )  -> 
( A  -  1 )  <  v ) )
1514ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  ( A  -  1 )  <  v ) )
16 simp3 1063 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  <  C )
1716a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  <  C ) )
183, 15, 173jcad 1243 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  (
v  e.  RR  /\  ( A  -  1
)  <  v  /\  v  <  C ) ) )
19 simp2 1062 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  A  <_  v )
2019a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  A  <_  v ) )
21 rexr 10085 . . . . . . . . . . . . 13  |-  ( A  e.  RR  ->  A  e.  RR* )
22 elioc2 12236 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) ) )
2321, 22sylan 488 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  <-> 
( C  e.  RR  /\  A  <  C  /\  C  <_  B ) ) )
2423biimpa 501 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) )
25 ltleletr 10130 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( v  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  (
( v  <  C  /\  C  <_  B )  ->  v  <_  B
) )
26253expa 1265 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( v  e.  RR  /\  C  e.  RR )  /\  B  e.  RR )  ->  ( ( v  <  C  /\  C  <_  B )  ->  v  <_  B ) )
2726an31s 848 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  ->  ( ( v  <  C  /\  C  <_  B )  ->  v  <_  B ) )
2827imp 445 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( B  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  /\  (
v  <  C  /\  C  <_  B ) )  ->  v  <_  B
)
2928ancom2s 844 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  /\  ( C  <_  B  /\  v  <  C ) )  -> 
v  <_  B )
3029an4s 869 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  RR  /\  C  e.  RR )  /\  C  <_  B )  /\  (
v  e.  RR  /\  v  <  C ) )  ->  v  <_  B
)
31303adantr2 1221 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  RR  /\  C  e.  RR )  /\  C  <_  B )  /\  (
v  e.  RR  /\  A  <_  v  /\  v  <  C ) )  -> 
v  <_  B )
3231ex 450 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  RR  /\  C  e.  RR )  /\  C  <_  B
)  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  <_  B ) )
3332anasss 679 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  C  <_  B )
)  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  <_  B ) )
34333adantr2 1221 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  A  <  C  /\  C  <_  B ) )  ->  ( ( v  e.  RR  /\  A  <_  v  /\  v  < 
C )  ->  v  <_  B ) )
3534adantll 750 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) )  ->  (
( v  e.  RR  /\  A  <_  v  /\  v  <  C )  -> 
v  <_  B )
)
3624, 35syldan 487 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  <_  B ) )
373, 20, 363jcad 1243 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
3818, 37jcad 555 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  (
( v  e.  RR  /\  ( A  -  1 )  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
39 simpl1 1064 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  ( A  -  1 )  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  e.  RR )
40 simpr2 1068 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  ( A  -  1 )  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  A  <_  v
)
41 simpl3 1066 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  ( A  -  1 )  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  <  C
)
4239, 40, 413jca 1242 . . . . . . . 8  |-  ( ( ( v  e.  RR  /\  ( A  -  1 )  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  ( v  e.  RR  /\  A  <_ 
v  /\  v  <  C ) )
4338, 42impbid1 215 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  <->  ( (
v  e.  RR  /\  ( A  -  1
)  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
44 simpll 790 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  A  e.  RR )
4524simp1d 1073 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  C  e.  RR )
4645rexrd 10089 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  C  e.  RR* )
47 elico2 12237 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR* )  -> 
( v  e.  ( A [,) C )  <-> 
( v  e.  RR  /\  A  <_  v  /\  v  <  C ) ) )
4844, 46, 47syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( v  e.  ( A [,) C
)  <->  ( v  e.  RR  /\  A  <_ 
v  /\  v  <  C ) ) )
49 elin 3796 . . . . . . . 8  |-  ( v  e.  ( ( ( A  -  1 ) (,) C )  i^i  ( A [,] B
) )  <->  ( v  e.  ( ( A  - 
1 ) (,) C
)  /\  v  e.  ( A [,] B ) ) )
506rexrd 10089 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR* )
5150ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( A  -  1 )  e. 
RR* )
52 elioo2 12216 . . . . . . . . . 10  |-  ( ( ( A  -  1 )  e.  RR*  /\  C  e.  RR* )  ->  (
v  e.  ( ( A  -  1 ) (,) C )  <->  ( v  e.  RR  /\  ( A  -  1 )  < 
v  /\  v  <  C ) ) )
5351, 46, 52syl2anc 693 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( v  e.  ( ( A  - 
1 ) (,) C
)  <->  ( v  e.  RR  /\  ( A  -  1 )  < 
v  /\  v  <  C ) ) )
54 elicc2 12238 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( v  e.  ( A [,] B )  <-> 
( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
5554adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( v  e.  ( A [,] B
)  <->  ( v  e.  RR  /\  A  <_ 
v  /\  v  <_  B ) ) )
5653, 55anbi12d 747 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  ( ( A  -  1 ) (,) C )  /\  v  e.  ( A [,] B ) )  <->  ( (
v  e.  RR  /\  ( A  -  1
)  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
5749, 56syl5bb 272 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( v  e.  ( ( ( A  -  1 ) (,) C )  i^i  ( A [,] B ) )  <-> 
( ( v  e.  RR  /\  ( A  -  1 )  < 
v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
5843, 48, 573bitr4d 300 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( v  e.  ( A [,) C
)  <->  v  e.  ( ( ( A  - 
1 ) (,) C
)  i^i  ( A [,] B ) ) ) )
5958eqrdv 2620 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( A [,) C )  =  ( ( ( A  - 
1 ) (,) C
)  i^i  ( A [,] B ) ) )
60 ineq1 3807 . . . . . . 7  |-  ( v  =  ( ( A  -  1 ) (,) C )  ->  (
v  i^i  ( A [,] B ) )  =  ( ( ( A  -  1 ) (,) C )  i^i  ( A [,] B ) ) )
6160eqeq2d 2632 . . . . . 6  |-  ( v  =  ( ( A  -  1 ) (,) C )  ->  (
( A [,) C
)  =  ( v  i^i  ( A [,] B ) )  <->  ( A [,) C )  =  ( ( ( A  - 
1 ) (,) C
)  i^i  ( A [,] B ) ) ) )
6261rspcev 3309 . . . . 5  |-  ( ( ( ( A  - 
1 ) (,) C
)  e.  ( topGen ` 
ran  (,) )  /\  ( A [,) C )  =  ( ( ( A  -  1 ) (,) C )  i^i  ( A [,] B ) ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( A [,) C
)  =  ( v  i^i  ( A [,] B ) ) )
631, 59, 62sylancr 695 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( A [,) C
)  =  ( v  i^i  ( A [,] B ) ) )
64 retop 22565 . . . . 5  |-  ( topGen ` 
ran  (,) )  e.  Top
65 ovex 6678 . . . . 5  |-  ( A [,] B )  e. 
_V
66 elrest 16088 . . . . 5  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  e. 
_V )  ->  (
( A [,) C
)  e.  ( (
topGen `  ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `
 ran  (,) )
( A [,) C
)  =  ( v  i^i  ( A [,] B ) ) ) )
6764, 65, 66mp2an 708 . . . 4  |-  ( ( A [,) C )  e.  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `  ran  (,) )
( A [,) C
)  =  ( v  i^i  ( A [,] B ) ) )
6863, 67sylibr 224 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( A [,) C )  e.  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
69 iccssre 12255 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
7069adantr 481 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( A [,] B )  C_  RR )
71 eqid 2622 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
72 icoopnst.1 . . . . 5  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
7371, 72resubmet 22605 . . . 4  |-  ( ( A [,] B ) 
C_  RR  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
7470, 73syl 17 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
7568, 74eleqtrrd 2704 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( A [,) C )  e.  J
)
7675ex 450 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  ->  ( A [,) C )  e.  J
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   (,)cioo 12175   (,]cioc 12176   [,)cico 12177   [,]cicc 12178   abscabs 13974   ↾t crest 16081   topGenctg 16098   MetOpencmopn 19736   Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator