| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icoopnst | Structured version Visualization version Unicode version | ||
| Description: A half-open interval
starting at |
| Ref | Expression |
|---|---|
| icoopnst.1 |
|
| Ref | Expression |
|---|---|
| icoopnst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooretop 22569 |
. . . . 5
| |
| 2 | simp1 1061 |
. . . . . . . . . . 11
| |
| 3 | 2 | a1i 11 |
. . . . . . . . . 10
|
| 4 | ltm1 10863 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 4 | adantr 481 |
. . . . . . . . . . . . . . 15
|
| 6 | peano2rem 10348 |
. . . . . . . . . . . . . . . . 17
| |
| 7 | 6 | adantr 481 |
. . . . . . . . . . . . . . . 16
|
| 8 | ltletr 10129 |
. . . . . . . . . . . . . . . . 17
| |
| 9 | 8 | 3expb 1266 |
. . . . . . . . . . . . . . . 16
|
| 10 | 7, 9 | mpancom 703 |
. . . . . . . . . . . . . . 15
|
| 11 | 5, 10 | mpand 711 |
. . . . . . . . . . . . . 14
|
| 12 | 11 | impr 649 |
. . . . . . . . . . . . 13
|
| 13 | 12 | 3adantr3 1222 |
. . . . . . . . . . . 12
|
| 14 | 13 | ex 450 |
. . . . . . . . . . 11
|
| 15 | 14 | ad2antrr 762 |
. . . . . . . . . 10
|
| 16 | simp3 1063 |
. . . . . . . . . . 11
| |
| 17 | 16 | a1i 11 |
. . . . . . . . . 10
|
| 18 | 3, 15, 17 | 3jcad 1243 |
. . . . . . . . 9
|
| 19 | simp2 1062 |
. . . . . . . . . . 11
| |
| 20 | 19 | a1i 11 |
. . . . . . . . . 10
|
| 21 | rexr 10085 |
. . . . . . . . . . . . 13
| |
| 22 | elioc2 12236 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | sylan 488 |
. . . . . . . . . . . 12
|
| 24 | 23 | biimpa 501 |
. . . . . . . . . . 11
|
| 25 | ltleletr 10130 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 26 | 25 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . 20
|
| 27 | 26 | an31s 848 |
. . . . . . . . . . . . . . . . . . 19
|
| 28 | 27 | imp 445 |
. . . . . . . . . . . . . . . . . 18
|
| 29 | 28 | ancom2s 844 |
. . . . . . . . . . . . . . . . 17
|
| 30 | 29 | an4s 869 |
. . . . . . . . . . . . . . . 16
|
| 31 | 30 | 3adantr2 1221 |
. . . . . . . . . . . . . . 15
|
| 32 | 31 | ex 450 |
. . . . . . . . . . . . . 14
|
| 33 | 32 | anasss 679 |
. . . . . . . . . . . . 13
|
| 34 | 33 | 3adantr2 1221 |
. . . . . . . . . . . 12
|
| 35 | 34 | adantll 750 |
. . . . . . . . . . 11
|
| 36 | 24, 35 | syldan 487 |
. . . . . . . . . 10
|
| 37 | 3, 20, 36 | 3jcad 1243 |
. . . . . . . . 9
|
| 38 | 18, 37 | jcad 555 |
. . . . . . . 8
|
| 39 | simpl1 1064 |
. . . . . . . . 9
| |
| 40 | simpr2 1068 |
. . . . . . . . 9
| |
| 41 | simpl3 1066 |
. . . . . . . . 9
| |
| 42 | 39, 40, 41 | 3jca 1242 |
. . . . . . . 8
|
| 43 | 38, 42 | impbid1 215 |
. . . . . . 7
|
| 44 | simpll 790 |
. . . . . . . 8
| |
| 45 | 24 | simp1d 1073 |
. . . . . . . . 9
|
| 46 | 45 | rexrd 10089 |
. . . . . . . 8
|
| 47 | elico2 12237 |
. . . . . . . 8
| |
| 48 | 44, 46, 47 | syl2anc 693 |
. . . . . . 7
|
| 49 | elin 3796 |
. . . . . . . 8
| |
| 50 | 6 | rexrd 10089 |
. . . . . . . . . . 11
|
| 51 | 50 | ad2antrr 762 |
. . . . . . . . . 10
|
| 52 | elioo2 12216 |
. . . . . . . . . 10
| |
| 53 | 51, 46, 52 | syl2anc 693 |
. . . . . . . . 9
|
| 54 | elicc2 12238 |
. . . . . . . . . 10
| |
| 55 | 54 | adantr 481 |
. . . . . . . . 9
|
| 56 | 53, 55 | anbi12d 747 |
. . . . . . . 8
|
| 57 | 49, 56 | syl5bb 272 |
. . . . . . 7
|
| 58 | 43, 48, 57 | 3bitr4d 300 |
. . . . . 6
|
| 59 | 58 | eqrdv 2620 |
. . . . 5
|
| 60 | ineq1 3807 |
. . . . . . 7
| |
| 61 | 60 | eqeq2d 2632 |
. . . . . 6
|
| 62 | 61 | rspcev 3309 |
. . . . 5
|
| 63 | 1, 59, 62 | sylancr 695 |
. . . 4
|
| 64 | retop 22565 |
. . . . 5
| |
| 65 | ovex 6678 |
. . . . 5
| |
| 66 | elrest 16088 |
. . . . 5
| |
| 67 | 64, 65, 66 | mp2an 708 |
. . . 4
|
| 68 | 63, 67 | sylibr 224 |
. . 3
|
| 69 | iccssre 12255 |
. . . . 5
| |
| 70 | 69 | adantr 481 |
. . . 4
|
| 71 | eqid 2622 |
. . . . 5
| |
| 72 | icoopnst.1 |
. . . . 5
| |
| 73 | 71, 72 | resubmet 22605 |
. . . 4
|
| 74 | 70, 73 | syl 17 |
. . 3
|
| 75 | 68, 74 | eleqtrrd 2704 |
. 2
|
| 76 | 75 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-rest 16083 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |