MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocopnst Structured version   Visualization version   Unicode version

Theorem iocopnst 22739
Description: A half-open interval ending at  B is open in the closed interval from  A to  B. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
iocopnst.1  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
Assertion
Ref Expression
iocopnst  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  ->  ( C (,] B )  e.  J
) )

Proof of Theorem iocopnst
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 iooretop 22569 . . . . 5  |-  ( C (,) ( B  + 
1 ) )  e.  ( topGen `  ran  (,) )
2 simp1 1061 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  e.  RR )
32a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  e.  RR ) )
4 simp2 1062 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  C  <  v )
54a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  C  <  v ) )
6 ltp1 10861 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  B  <  ( B  +  1 ) )
76adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  B  <  ( B  +  1 ) )
8 peano2re 10209 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
9 lelttr 10128 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  RR  /\  B  e.  RR  /\  ( B  +  1 )  e.  RR )  -> 
( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
1093expa 1265 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  e.  RR  /\  B  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
1110ancom1s 847 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  RR  /\  v  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
1211ancomsd 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  RR  /\  v  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( B  <  ( B  + 
1 )  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
138, 12mpidan 704 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( ( B  < 
( B  +  1 )  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
147, 13mpand 711 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( v  <_  B  ->  v  <  ( B  +  1 ) ) )
1514impr 649 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  ( v  e.  RR  /\  v  <_  B )
)  ->  v  <  ( B  +  1 ) )
16153adantr2 1221 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  ( v  e.  RR  /\  C  <  v  /\  v  <_  B ) )  ->  v  <  ( B  +  1 ) )
1716ex 450 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <_  B )  -> 
v  <  ( B  +  1 ) ) )
1817ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
193, 5, 183jcad 1243 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) ) ) )
20 rexr 10085 . . . . . . . . . . . . 13  |-  ( B  e.  RR  ->  B  e.  RR* )
21 elico2 12237 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
2220, 21sylan2 491 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
2322biimpa 501 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )
24 lelttr 10128 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  (
( A  <_  C  /\  C  <  v )  ->  A  <  v
) )
25 ltle 10126 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( A  <  v  ->  A  <_  v )
)
26253adant2 1080 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  ( A  <  v  ->  A  <_  v ) )
2724, 26syld 47 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  (
( A  <_  C  /\  C  <  v )  ->  A  <_  v
) )
28273expa 1265 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  ->  ( ( A  <_  C  /\  C  <  v )  ->  A  <_  v ) )
2928imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  /\  ( A  <_  C  /\  C  <  v ) )  ->  A  <_  v )
3029an4s 869 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C )  /\  (
v  e.  RR  /\  C  <  v ) )  ->  A  <_  v
)
31303adantr3 1222 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C )  /\  (
v  e.  RR  /\  C  <  v  /\  v  <_  B ) )  ->  A  <_  v )
3231ex 450 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C
)  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3332anasss 679 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  A  <_  C )
)  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
34333adantr3 1222 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <  B ) )  ->  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3534adantlr 751 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3623, 35syldan 487 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
37 simp3 1063 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <_  B )
3837a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <_  B ) )
393, 36, 383jcad 1243 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
4019, 39jcad 555 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
41 simpl1 1064 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  e.  RR )
42 simpl2 1065 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  C  <  v
)
43 simpr3 1069 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  <_  B
)
4441, 42, 433jca 1242 . . . . . . . 8  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) )
4540, 44impbid1 215 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  <->  ( (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) )  /\  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
4623simp1d 1073 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR )
47 rexr 10085 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  RR* )
4846, 47syl 17 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR* )
49 simplr 792 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  B  e.  RR )
50 elioc2 12236 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  B  e.  RR )  ->  (
v  e.  ( C (,] B )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) ) )
5148, 49, 50syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,] B
)  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) ) )
52 elin 3796 . . . . . . . 8  |-  ( v  e.  ( ( C (,) ( B  + 
1 ) )  i^i  ( A [,] B
) )  <->  ( v  e.  ( C (,) ( B  +  1 ) )  /\  v  e.  ( A [,] B
) ) )
53 rexr 10085 . . . . . . . . . . . 12  |-  ( ( B  +  1 )  e.  RR  ->  ( B  +  1 )  e.  RR* )
548, 53syl 17 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR* )
5554ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( B  +  1 )  e. 
RR* )
56 elioo2 12216 . . . . . . . . . 10  |-  ( ( C  e.  RR*  /\  ( B  +  1 )  e.  RR* )  ->  (
v  e.  ( C (,) ( B  + 
1 ) )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) ) ) )
5748, 55, 56syl2anc 693 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,) ( B  +  1 ) )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) ) ) )
58 elicc2 12238 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( v  e.  ( A [,] B )  <-> 
( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
5958adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( A [,] B
)  <->  ( v  e.  RR  /\  A  <_ 
v  /\  v  <_  B ) ) )
6057, 59anbi12d 747 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  ( C (,) ( B  + 
1 ) )  /\  v  e.  ( A [,] B ) )  <->  ( (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) )  /\  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
6152, 60syl5bb 272 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) )  <-> 
( ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
6245, 51, 613bitr4d 300 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,] B
)  <->  v  e.  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) ) )
6362eqrdv 2620 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  =  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) )
64 ineq1 3807 . . . . . . 7  |-  ( v  =  ( C (,) ( B  +  1
) )  ->  (
v  i^i  ( A [,] B ) )  =  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) ) )
6564eqeq2d 2632 . . . . . 6  |-  ( v  =  ( C (,) ( B  +  1
) )  ->  (
( C (,] B
)  =  ( v  i^i  ( A [,] B ) )  <->  ( C (,] B )  =  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) ) )
6665rspcev 3309 . . . . 5  |-  ( ( ( C (,) ( B  +  1 ) )  e.  ( topGen ` 
ran  (,) )  /\  ( C (,] B )  =  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
671, 63, 66sylancr 695 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
68 retop 22565 . . . . 5  |-  ( topGen ` 
ran  (,) )  e.  Top
69 ovex 6678 . . . . 5  |-  ( A [,] B )  e. 
_V
70 elrest 16088 . . . . 5  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  e. 
_V )  ->  (
( C (,] B
)  e.  ( (
topGen `  ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `
 ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) ) )
7168, 69, 70mp2an 708 . . . 4  |-  ( ( C (,] B )  e.  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
7267, 71sylibr 224 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  e.  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
73 iccssre 12255 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
7473adantr 481 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( A [,] B )  C_  RR )
75 eqid 2622 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
76 iocopnst.1 . . . . 5  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
7775, 76resubmet 22605 . . . 4  |-  ( ( A [,] B ) 
C_  RR  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
7874, 77syl 17 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
7972, 78eleqtrrd 2704 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  e.  J
)
8079ex 450 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  ->  ( C (,] B )  e.  J
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   (,)cioo 12175   (,]cioc 12176   [,)cico 12177   [,]cicc 12178   abscabs 13974   ↾t crest 16081   topGenctg 16098   MetOpencmopn 19736   Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator