MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumadd Structured version   Visualization version   Unicode version

Theorem isumadd 14498
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumadd.1  |-  Z  =  ( ZZ>= `  M )
isumadd.2  |-  ( ph  ->  M  e.  ZZ )
isumadd.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumadd.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumadd.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
isumadd.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
isumadd.7  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
isumadd.8  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumadd  |-  ( ph  -> 
sum_ k  e.  Z  ( A  +  B
)  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem isumadd
Dummy variables  j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 isumadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 fveq2 6191 . . . . . 6  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
4 fveq2 6191 . . . . . 6  |-  ( m  =  k  ->  ( G `  m )  =  ( G `  k ) )
53, 4oveq12d 6668 . . . . 5  |-  ( m  =  k  ->  (
( F `  m
)  +  ( G `
 m ) )  =  ( ( F `
 k )  +  ( G `  k
) ) )
6 eqid 2622 . . . . 5  |-  ( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) )  =  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) )
7 ovex 6678 . . . . 5  |-  ( ( F `  k )  +  ( G `  k ) )  e. 
_V
85, 6, 7fvmpt 6282 . . . 4  |-  ( k  e.  Z  ->  (
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `  k
)  =  ( ( F `  k )  +  ( G `  k ) ) )
98adantl 482 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `  k
)  =  ( ( F `  k )  +  ( G `  k ) ) )
10 isumadd.3 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
11 isumadd.5 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
1210, 11oveq12d 6668 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  +  ( G `
 k ) )  =  ( A  +  B ) )
139, 12eqtrd 2656 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `  k
)  =  ( A  +  B ) )
14 isumadd.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
15 isumadd.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
1614, 15addcld 10059 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  +  B )  e.  CC )
17 isumadd.7 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
181, 2, 10, 14, 17isumclim2 14489 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  Z  A )
19 seqex 12803 . . . 4  |-  seq M
(  +  ,  ( m  e.  Z  |->  ( ( F `  m
)  +  ( G `
 m ) ) ) )  e.  _V
2019a1i 11 . . 3  |-  ( ph  ->  seq M (  +  ,  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) ) )  e.  _V )
21 isumadd.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
221, 2, 11, 15, 21isumclim2 14489 . . 3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  sum_ k  e.  Z  B )
2310, 14eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
241, 2, 23serf 12829 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
2524ffvelrnda 6359 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
2611, 15eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
271, 2, 26serf 12829 . . . 4  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> CC )
2827ffvelrnda 6359 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  G ) `  j
)  e.  CC )
29 simpr 477 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
3029, 1syl6eleq 2711 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
31 simpll 790 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  ph )
32 elfzuz 12338 . . . . . . 7  |-  ( k  e.  ( M ... j )  ->  k  e.  ( ZZ>= `  M )
)
3332, 1syl6eleqr 2712 . . . . . 6  |-  ( k  e.  ( M ... j )  ->  k  e.  Z )
3433adantl 482 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  k  e.  Z )
3531, 34, 23syl2anc 693 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  ( F `  k )  e.  CC )
3631, 34, 26syl2anc 693 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  ( G `  k )  e.  CC )
3734, 8syl 17 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  (
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `  k
)  =  ( ( F `  k )  +  ( G `  k ) ) )
3830, 35, 36, 37seradd 12843 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  , 
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) ) `  j )  =  ( (  seq M (  +  ,  F ) `
 j )  +  (  seq M (  +  ,  G ) `
 j ) ) )
391, 2, 18, 20, 22, 25, 28, 38climadd 14362 . 2  |-  ( ph  ->  seq M (  +  ,  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) ) )  ~~>  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
401, 2, 13, 16, 39isumclim 14488 1  |-  ( ph  -> 
sum_ k  e.  Z  ( A  +  B
)  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   CCcc 9934    + caddc 9939   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  sumsplit  14499  binomcxplemnotnn0  38555
  Copyright terms: Public domain W3C validator