Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem19 Structured version   Visualization version   Unicode version

Theorem knoppndvlem19 32521
Description: Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 17-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem19.a  |-  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  m )
knoppndvlem19.b  |-  B  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( m  +  1 ) )
knoppndvlem19.j  |-  ( ph  ->  J  e.  NN0 )
knoppndvlem19.h  |-  ( ph  ->  H  e.  RR )
knoppndvlem19.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
knoppndvlem19  |-  ( ph  ->  E. m  e.  ZZ  ( A  <_  H  /\  H  <_  B ) )
Distinct variable groups:    ph, m    m, J    m, H    m, N
Allowed substitution hints:    A( m)    B( m)

Proof of Theorem knoppndvlem19
StepHypRef Expression
1 knoppndvlem19.h . . . 4  |-  ( ph  ->  H  e.  RR )
2 2re 11090 . . . . . . . 8  |-  2  e.  RR
32a1i 11 . . . . . . 7  |-  ( ph  ->  2  e.  RR )
4 knoppndvlem19.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
54nnred 11035 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
63, 5remulcld 10070 . . . . . 6  |-  ( ph  ->  ( 2  x.  N
)  e.  RR )
7 2pos 11112 . . . . . . . . 9  |-  0  <  2
87a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <  2 )
94nngt0d 11064 . . . . . . . 8  |-  ( ph  ->  0  <  N )
103, 5, 8, 9mulgt0d 10192 . . . . . . 7  |-  ( ph  ->  0  <  ( 2  x.  N ) )
1110gt0ne0d 10592 . . . . . 6  |-  ( ph  ->  ( 2  x.  N
)  =/=  0 )
12 knoppndvlem19.j . . . . . . . 8  |-  ( ph  ->  J  e.  NN0 )
1312nn0zd 11480 . . . . . . 7  |-  ( ph  ->  J  e.  ZZ )
1413znegcld 11484 . . . . . 6  |-  ( ph  -> 
-u J  e.  ZZ )
156, 11, 14reexpclzd 13034 . . . . 5  |-  ( ph  ->  ( ( 2  x.  N ) ^ -u J
)  e.  RR )
163recnd 10068 . . . . . 6  |-  ( ph  ->  2  e.  CC )
175recnd 10068 . . . . . 6  |-  ( ph  ->  N  e.  CC )
1816, 17, 11mulne0bad 10682 . . . . 5  |-  ( ph  ->  2  =/=  0 )
1915, 3, 18redivcld 10853 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ -u J )  /  2
)  e.  RR )
206, 14, 103jca 1242 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  N )  e.  RR  /\  -u J  e.  ZZ  /\  0  <  ( 2  x.  N ) ) )
21 expgt0 12893 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  RR  /\  -u J  e.  ZZ  /\  0  <  ( 2  x.  N ) )  -> 
0  <  ( (
2  x.  N ) ^ -u J ) )
2220, 21syl 17 . . . . . 6  |-  ( ph  ->  0  <  ( ( 2  x.  N ) ^ -u J ) )
2315, 3, 22, 8divgt0d 10959 . . . . 5  |-  ( ph  ->  0  <  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )
2423gt0ne0d 10592 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ -u J )  /  2
)  =/=  0 )
251, 19, 24redivcld 10853 . . 3  |-  ( ph  ->  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) )  e.  RR )
2625flcld 12599 . 2  |-  ( ph  ->  ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  e.  ZZ )
27 knoppndvlem19.a . . . . . . 7  |-  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  m )
2827a1i 11 . . . . . 6  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  A  =  ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  m ) )
29 id 22 . . . . . . 7  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) ) )
3029oveq2d 6666 . . . . . 6  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  m )  =  ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) ) ) )
3128, 30eqtrd 2656 . . . . 5  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  A  =  ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) ) ) )
3231breq1d 4663 . . . 4  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  ( A  <_  H  <->  ( (
( ( 2  x.  N ) ^ -u J
)  /  2 )  x.  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) ) )  <_  H ) )
33 knoppndvlem19.b . . . . . . 7  |-  B  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( m  +  1 ) )
3433a1i 11 . . . . . 6  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  B  =  ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  ( m  + 
1 ) ) )
3529oveq1d 6665 . . . . . . 7  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  (
m  +  1 )  =  ( ( |_
`  ( H  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) ) )  +  1 ) )
3635oveq2d 6666 . . . . . 6  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  ( m  +  1 ) )  =  ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  ( ( |_
`  ( H  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) ) )  +  1 ) ) )
3734, 36eqtrd 2656 . . . . 5  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  B  =  ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  ( ( |_
`  ( H  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) ) )  +  1 ) ) )
3837breq2d 4665 . . . 4  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  ( H  <_  B  <->  H  <_  ( ( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  ( ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  +  1 ) ) ) )
3932, 38anbi12d 747 . . 3  |-  ( m  =  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  ->  (
( A  <_  H  /\  H  <_  B )  <-> 
( ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) ) )  <_  H  /\  H  <_  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  ( ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  +  1 ) ) ) ) )
4039adantl 482 . 2  |-  ( (
ph  /\  m  =  ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) ) )  ->  (
( A  <_  H  /\  H  <_  B )  <-> 
( ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) ) )  <_  H  /\  H  <_  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  ( ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  +  1 ) ) ) ) )
4126zred 11482 . . . . 5  |-  ( ph  ->  ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  e.  RR )
42 0red 10041 . . . . . 6  |-  ( ph  ->  0  e.  RR )
4342, 19, 23ltled 10185 . . . . 5  |-  ( ph  ->  0  <_  ( (
( 2  x.  N
) ^ -u J
)  /  2 ) )
44 flle 12600 . . . . . 6  |-  ( ( H  /  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )  e.  RR  ->  ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  <_  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )
4525, 44syl 17 . . . . 5  |-  ( ph  ->  ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  <_  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )
4641, 25, 19, 43, 45lemul2ad 10964 . . . 4  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) ) )  <_  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) ) )
471recnd 10068 . . . . 5  |-  ( ph  ->  H  e.  CC )
4819recnd 10068 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ -u J )  /  2
)  e.  CC )
4947, 48, 24divcan2d 10803 . . . 4  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  =  H )
5046, 49breqtrd 4679 . . 3  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) ) )  <_  H
)
5149eqcomd 2628 . . . 4  |-  ( ph  ->  H  =  ( ( ( ( 2  x.  N ) ^ -u J
)  /  2 )  x.  ( H  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) ) ) )
52 peano2re 10209 . . . . . 6  |-  ( ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  e.  RR  ->  ( ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  +  1 )  e.  RR )
5341, 52syl 17 . . . . 5  |-  ( ph  ->  ( ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  +  1 )  e.  RR )
54 fllep1 12602 . . . . . 6  |-  ( ( H  /  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )  e.  RR  ->  ( H  /  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )  <_  ( ( |_ `  ( H  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) ) )  +  1 ) )
5525, 54syl 17 . . . . 5  |-  ( ph  ->  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) )  <_  ( ( |_ `  ( H  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) ) )  +  1 ) )
5625, 53, 19, 43, 55lemul2ad 10964 . . . 4  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )  <_  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  ( ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  +  1 ) ) )
5751, 56eqbrtrd 4675 . . 3  |-  ( ph  ->  H  <_  ( (
( ( 2  x.  N ) ^ -u J
)  /  2 )  x.  ( ( |_
`  ( H  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) ) )  +  1 ) ) )
5850, 57jca 554 . 2  |-  ( ph  ->  ( ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  ( |_ `  ( H  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) ) )  <_  H  /\  H  <_  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  ( ( |_ `  ( H  /  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )  +  1 ) ) ) )
5926, 40, 58rspcedvd 3317 1  |-  ( ph  ->  E. m  e.  ZZ  ( A  <_  H  /\  H  <_  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   |_cfl 12591   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861
This theorem is referenced by:  knoppndvlem21  32523
  Copyright terms: Public domain W3C validator