MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgt0d Structured version   Visualization version   Unicode version

Theorem divgt0d 10959
Description: The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1  |-  ( ph  ->  A  e.  RR )
divgt0d.2  |-  ( ph  ->  B  e.  RR )
divgt0d.3  |-  ( ph  ->  0  <  A )
divgt0d.4  |-  ( ph  ->  0  <  B )
Assertion
Ref Expression
divgt0d  |-  ( ph  ->  0  <  ( A  /  B ) )

Proof of Theorem divgt0d
StepHypRef Expression
1 ltp1d.1 . 2  |-  ( ph  ->  A  e.  RR )
2 divgt0d.3 . 2  |-  ( ph  ->  0  <  A )
3 divgt0d.2 . 2  |-  ( ph  ->  B  e.  RR )
4 divgt0d.4 . 2  |-  ( ph  ->  0  <  B )
5 divgt0 10891 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  ( A  /  B ) )
61, 2, 3, 4, 5syl22anc 1327 1  |-  ( ph  ->  0  <  ( A  /  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936    < clt 10074    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  gtndiv  11454  nndivdvds  14989  nnoddm1d2  15102  bitsfzo  15157  sqgcd  15278  qredeu  15372  pythagtriplem19  15538  pcadd  15593  znidomb  19910  tangtx  24257  cosne0  24276  jensenlem2  24714  bposlem6  25014  lgseisenlem1  25100  2sqlem8  25151  omssubadd  30362  knoppndvlem19  32521  knoppndvlem21  32523  itg2addnclem  33461  pellexlem2  37394  sumnnodd  39862  sinaover2ne0  40079  ioodvbdlimc1lem1  40146  ioodvbdlimc1lem2  40147  ioodvbdlimc2lem  40149  stoweidlem36  40253  stoweidlem52  40269  dirkertrigeqlem3  40317  fourierdlem24  40348  fourierdlem79  40402  hoiqssbllem2  40837  blennngt2o2  42386
  Copyright terms: Public domain W3C validator