MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsneg Structured version   Visualization version   Unicode version

Theorem lgsneg 25046
Description: The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsneg  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L -u N
)  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  /L N ) ) )

Proof of Theorem lgsneg
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 4092 . . . . . . . . 9  |-  ( A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
21adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
32oveq1d 6665 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  (
-u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
4 oveq2 6658 . . . . . . . . . 10  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  ( -u 1  x.  -u 1 ) )
5 neg1mulneg1e1 11245 . . . . . . . . . 10  |-  ( -u
1  x.  -u 1
)  =  1
64, 5syl6eq 2672 . . . . . . . . 9  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  1 )
7 oveq2 6658 . . . . . . . . . 10  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  (
-u 1  x.  1 ) )
8 ax-1cn 9994 . . . . . . . . . . 11  |-  1  e.  CC
98mulm1i 10475 . . . . . . . . . 10  |-  ( -u
1  x.  1 )  =  -u 1
107, 9syl6eq 2672 . . . . . . . . 9  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  -u
1 )
116, 10ifsb 4099 . . . . . . . 8  |-  ( -u
1  x.  if ( N  <  0 , 
-u 1 ,  1 ) )  =  if ( N  <  0 ,  1 ,  -u
1 )
12 simpr 477 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  A  <  0 )
1312biantrud 528 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  ( N  <  0  /\  A  <  0 ) ) )
1413ifbid 4108 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  -u 1 ,  1 )  =  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
1514oveq2d 6666 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  (
-u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
16 simpl2 1065 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  e.  ZZ )
1716zred 11482 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  e.  RR )
18 0re 10040 . . . . . . . . . . . . 13  |-  0  e.  RR
19 ltlen 10138 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  0  e.  RR )  ->  ( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
2017, 18, 19sylancl 694 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
21 simpl3 1066 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  =/=  0 )
2221necomd 2849 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
0  =/=  N )
2322biantrud 528 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <_  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
2420, 23bitr4d 271 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  N  <_  0 ) )
2517le0neg1d 10599 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <_  0  <->  0  <_  -u N ) )
2617renegcld 10457 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  -u N  e.  RR )
27 lenlt 10116 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  -u N  e.  RR )  ->  ( 0  <_  -u N  <->  -.  -u N  <  0 ) )
2818, 26, 27sylancr 695 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( 0  <_  -u N  <->  -.  -u N  <  0
) )
2924, 25, 283bitrd 294 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  -.  -u N  <  0
) )
3029ifbid 4108 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  1 ,  -u
1 )  =  if ( -.  -u N  <  0 ,  1 , 
-u 1 ) )
31 ifnot 4133 . . . . . . . . 9  |-  if ( -.  -u N  <  0 ,  1 ,  -u
1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 )
3230, 31syl6eq 2672 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  1 ,  -u
1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 ) )
3311, 15, 323eqtr3a 2680 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )  =  if (
-u N  <  0 ,  -u 1 ,  1 ) )
3412biantrud 528 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u N  <  0  <->  (
-u N  <  0  /\  A  <  0
) ) )
3534ifbid 4108 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( -u N  <  0 ,  -u 1 ,  1 )  =  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )
363, 33, 353eqtrd 2660 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )
37 1t1e1 11175 . . . . . . 7  |-  ( 1  x.  1 )  =  1
38 iffalse 4095 . . . . . . . . 9  |-  ( -.  A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  1 )
3938adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if ( A  <  0 ,  -u
1 ,  1 )  =  1 )
40 simpr 477 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  A  <  0 )
4140intnand 962 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  ( N  <  0  /\  A  <  0 ) )
4241iffalsed 4097 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if (
( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
4339, 42oveq12d 6668 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  ( 1  x.  1 ) )
4440intnand 962 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  ( -u N  <  0  /\  A  <  0 ) )
4544iffalsed 4097 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if (
( -u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
4637, 43, 453eqtr4a 2682 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
4736, 46pm2.61dan 832 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
4847eqcomd 2628 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  ( if ( A  <  0 , 
-u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) ) )
49 simpr 477 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  n  e.  Prime )
50 simpl2 1065 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  N  e.  ZZ )
51 zq 11794 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  QQ )
5250, 51syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  N  e.  QQ )
53 pcneg 15578 . . . . . . . . . 10  |-  ( ( n  e.  Prime  /\  N  e.  QQ )  ->  (
n  pCnt  -u N )  =  ( n  pCnt  N ) )
5449, 52, 53syl2anc 693 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  -> 
( n  pCnt  -u N
)  =  ( n 
pCnt  N ) )
5554oveq2d 6666 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  -> 
( ( A  /L n ) ^
( n  pCnt  -u N
) )  =  ( ( A  /L
n ) ^ (
n  pCnt  N )
) )
5655ifeq1da 4116 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 )  =  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
5756mpteq2dv 4745 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) )
5857seqeq3d 12809 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) )  =  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) )
59 zcn 11382 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
60593ad2ant2 1083 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  CC )
6160absnegd 14188 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  -u N )  =  ( abs `  N
) )
6258, 61fveq12d 6197 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) )
6348, 62oveq12d 6668 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) )  =  ( ( if ( A  <  0 , 
-u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
64 neg1cn 11124 . . . . . 6  |-  -u 1  e.  CC
6564, 8keepel 4155 . . . . 5  |-  if ( A  <  0 , 
-u 1 ,  1 )  e.  CC
6665a1i 11 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  e.  CC )
6764, 8keepel 4155 . . . . 5  |-  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  e.  CC
6867a1i 11 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
69 nnabscl 14065 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
70693adant1 1079 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  N )  e.  NN )
71 nnuz 11723 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
7270, 71syl6eleq 2711 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  N )  e.  ( ZZ>= `  1 )
)
73 eqid 2622 . . . . . . . 8  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
7473lgsfcl3 25043 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
75 elfznn 12370 . . . . . . 7  |-  ( x  e.  ( 1 ... ( abs `  N
) )  ->  x  e.  NN )
76 ffvelrn 6357 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  x  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  x )  e.  ZZ )
7774, 75, 76syl2an 494 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  x  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  x )  e.  ZZ )
78 zmulcl 11426 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
7978adantl 482 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  y )  e.  ZZ )
8072, 77, 79seqcl 12821 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  ZZ )
8180zcnd 11483 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC )
8266, 68, 81mulassd 10063 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
8363, 82eqtrd 2656 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) )  =  ( if ( A  <  0 ,  -u
1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
84 simp1 1061 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  A  e.  ZZ )
85 znegcl 11412 . . . 4  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
86853ad2ant2 1083 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u N  e.  ZZ )
87 simp3 1063 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  N  =/=  0 )
8860, 87negne0d 10390 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u N  =/=  0 )
89 eqid 2622 . . . 4  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) )
9089lgsval4 25042 . . 3  |-  ( ( A  e.  ZZ  /\  -u N  e.  ZZ  /\  -u N  =/=  0 )  ->  ( A  /L -u N )  =  ( if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) ) ) `  ( abs `  -u N ) ) ) )
9184, 86, 88, 90syl3anc 1326 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L -u N
)  =  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) ) )
9273lgsval4 25042 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
9392oveq2d 6666 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  /L N ) )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
9483, 91, 933eqtr4d 2666 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L -u N
)  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  /L N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075   -ucneg 10267   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   QQcq 11788   ...cfz 12326    seqcseq 12801   ^cexp 12860   abscabs 13974   Primecprime 15385    pCnt cpc 15541    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-lgs 25020
This theorem is referenced by:  lgsneg1  25047
  Copyright terms: Public domain W3C validator