Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz2 Structured version   Visualization version   Unicode version

Theorem limsupvaluz2 39970
Description: The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz2.m  |-  ( ph  ->  M  e.  ZZ )
limsupvaluz2.z  |-  Z  =  ( ZZ>= `  M )
limsupvaluz2.f  |-  ( ph  ->  F : Z --> RR )
limsupvaluz2.r  |-  ( ph  ->  ( limsup `  F )  e.  RR )
Assertion
Ref Expression
limsupvaluz2  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
) ,  RR ,  <  ) )
Distinct variable groups:    k, F    k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem limsupvaluz2
Dummy variables  i 
j  x  n  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupvaluz2.m . . 3  |-  ( ph  ->  M  e.  ZZ )
2 limsupvaluz2.z . . 3  |-  Z  =  ( ZZ>= `  M )
3 limsupvaluz2.f . . . 4  |-  ( ph  ->  F : Z --> RR )
43frexr 39604 . . 3  |-  ( ph  ->  F : Z --> RR* )
51, 2, 4limsupvaluz 39940 . 2  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) ,  RR* ,  <  ) )
63adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  F : Z --> RR )
7 id 22 . . . . . . . . . . 11  |-  ( n  e.  Z  ->  n  e.  Z )
82, 7uzssd2 39644 . . . . . . . . . 10  |-  ( n  e.  Z  ->  ( ZZ>=
`  n )  C_  Z )
98adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  ( ZZ>=
`  n )  C_  Z )
106, 9feqresmpt 6250 . . . . . . . 8  |-  ( (
ph  /\  n  e.  Z )  ->  ( F  |`  ( ZZ>= `  n
) )  =  ( m  e.  ( ZZ>= `  n )  |->  ( F `
 m ) ) )
1110rneqd 5353 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  ran  ( F  |`  ( ZZ>= `  n ) )  =  ran  ( m  e.  ( ZZ>= `  n )  |->  ( F `  m
) ) )
1211supeq1d 8352 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( m  e.  (
ZZ>= `  n )  |->  ( F `  m ) ) ,  RR* ,  <  ) )
13 nfcv 2764 . . . . . . . . . 10  |-  F/_ m F
14 limsupvaluz2.r . . . . . . . . . . 11  |-  ( ph  ->  ( limsup `  F )  e.  RR )
1514renepnfd 10090 . . . . . . . . . 10  |-  ( ph  ->  ( limsup `  F )  =/= +oo )
1613, 2, 3, 15limsupubuz 39945 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR  A. m  e.  Z  ( F `  m )  <_  x )
1716adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  Z )  ->  E. x  e.  RR  A. m  e.  Z  ( F `  m )  <_  x
)
18 ssralv 3666 . . . . . . . . . . 11  |-  ( (
ZZ>= `  n )  C_  Z  ->  ( A. m  e.  Z  ( F `  m )  <_  x  ->  A. m  e.  (
ZZ>= `  n ) ( F `  m )  <_  x ) )
198, 18syl 17 . . . . . . . . . 10  |-  ( n  e.  Z  ->  ( A. m  e.  Z  ( F `  m )  <_  x  ->  A. m  e.  ( ZZ>= `  n )
( F `  m
)  <_  x )
)
2019adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  ( A. m  e.  Z  ( F `  m )  <_  x  ->  A. m  e.  ( ZZ>= `  n )
( F `  m
)  <_  x )
)
2120reximdv 3016 . . . . . . . 8  |-  ( (
ph  /\  n  e.  Z )  ->  ( E. x  e.  RR  A. m  e.  Z  ( F `  m )  <_  x  ->  E. x  e.  RR  A. m  e.  ( ZZ>= `  n )
( F `  m
)  <_  x )
)
2217, 21mpd 15 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  E. x  e.  RR  A. m  e.  ( ZZ>= `  n )
( F `  m
)  <_  x )
23 nfv 1843 . . . . . . . 8  |-  F/ m
( ph  /\  n  e.  Z )
242eluzelz2 39627 . . . . . . . . . 10  |-  ( n  e.  Z  ->  n  e.  ZZ )
25 uzid 11702 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  n  e.  ( ZZ>= `  n )
)
26 ne0i 3921 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  n
)  ->  ( ZZ>= `  n )  =/=  (/) )
2724, 25, 263syl 18 . . . . . . . . 9  |-  ( n  e.  Z  ->  ( ZZ>=
`  n )  =/=  (/) )
2827adantl 482 . . . . . . . 8  |-  ( (
ph  /\  n  e.  Z )  ->  ( ZZ>=
`  n )  =/=  (/) )
296adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  Z )  /\  m  e.  ( ZZ>= `  n )
)  ->  F : Z
--> RR )
309sselda 3603 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  Z )  /\  m  e.  ( ZZ>= `  n )
)  ->  m  e.  Z )
3129, 30ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  Z )  /\  m  e.  ( ZZ>= `  n )
)  ->  ( F `  m )  e.  RR )
3223, 28, 31supxrre3rnmpt 39656 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  ( sup ( ran  ( m  e.  ( ZZ>= `  n
)  |->  ( F `  m ) ) , 
RR* ,  <  )  e.  RR  <->  E. x  e.  RR  A. m  e.  ( ZZ>= `  n ) ( F `
 m )  <_  x ) )
3322, 32mpbird 247 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  sup ( ran  ( m  e.  ( ZZ>= `  n )  |->  ( F `  m
) ) ,  RR* ,  <  )  e.  RR )
3412, 33eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  e.  RR )
35 eqid 2622 . . . . 5  |-  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)  =  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)
3634, 35fmptd 6385 . . . 4  |-  ( ph  ->  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) : Z --> RR )
3736frnd 39426 . . 3  |-  ( ph  ->  ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) )  C_  RR )
38 nfv 1843 . . . 4  |-  F/ n ph
3934elexd 3214 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  e.  _V )
401, 2uzn0d 39652 . . . 4  |-  ( ph  ->  Z  =/=  (/) )
4138, 39, 35, 40rnmptn0 39413 . . 3  |-  ( ph  ->  ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) )  =/=  (/) )
42 nfcv 2764 . . . . . . . . . 10  |-  F/_ j F
4342, 1, 2, 4limsupre3uz 39968 . . . . . . . . 9  |-  ( ph  ->  ( ( limsup `  F
)  e.  RR  <->  ( E. x  e.  RR  A. i  e.  Z  E. j  e.  ( ZZ>= `  i )
x  <_  ( F `  j )  /\  E. x  e.  RR  E. i  e.  Z  A. j  e.  ( ZZ>= `  i )
( F `  j
)  <_  x )
) )
4414, 43mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( E. x  e.  RR  A. i  e.  Z  E. j  e.  ( ZZ>= `  i )
x  <_  ( F `  j )  /\  E. x  e.  RR  E. i  e.  Z  A. j  e.  ( ZZ>= `  i )
( F `  j
)  <_  x )
)
4544simpld 475 . . . . . . 7  |-  ( ph  ->  E. x  e.  RR  A. i  e.  Z  E. j  e.  ( ZZ>= `  i ) x  <_ 
( F `  j
) )
46 simp-4r 807 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  x  e.  RR )
4746rexrd 10089 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  x  e.  RR* )
4843ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  F : Z --> RR* )
492uztrn2 11705 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  Z  /\  j  e.  ( ZZ>= `  i ) )  -> 
j  e.  Z )
50493adant1 1079 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  j  e.  Z
)
5148, 50ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  e.  RR* )
5251ad5ant134 1313 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  ( F `  j )  e.  RR* )
53 rnresss 39365 . . . . . . . . . . . . . . . . 17  |-  ran  ( F  |`  ( ZZ>= `  i
) )  C_  ran  F
5453a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  Z )  ->  ran  ( F  |`  ( ZZ>= `  i ) )  C_  ran  F )
553frnd 39426 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ran  F  C_  RR )
5655adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  Z )  ->  ran  F 
C_  RR )
5754, 56sstrd 3613 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  Z )  ->  ran  ( F  |`  ( ZZ>= `  i ) )  C_  RR )
58 ressxr 10083 . . . . . . . . . . . . . . . 16  |-  RR  C_  RR*
5958a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  Z )  ->  RR  C_ 
RR* )
6057, 59sstrd 3613 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  Z )  ->  ran  ( F  |`  ( ZZ>= `  i ) )  C_  RR* )
6160supxrcld 39290 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  Z )  ->  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  )  e.  RR* )
6261ad5ant13 1301 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )  e.  RR* )
63 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  x  <_  ( F `  j ) )
64603adant3 1081 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ran  ( F  |`  ( ZZ>= `  i )
)  C_  RR* )
65 fvres 6207 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ZZ>= `  i
)  ->  ( ( F  |`  ( ZZ>= `  i
) ) `  j
)  =  ( F `
 j ) )
6665eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( ZZ>= `  i
)  ->  ( F `  j )  =  ( ( F  |`  ( ZZ>=
`  i ) ) `
 j ) )
67663ad2ant3 1084 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  =  ( ( F  |`  ( ZZ>=
`  i ) ) `
 j ) )
683ffnd 6046 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  Fn  Z )
6968adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  Z )  ->  F  Fn  Z )
70 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  Z  ->  i  e.  Z )
712, 70uzssd2 39644 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  Z  ->  ( ZZ>=
`  i )  C_  Z )
7271adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  Z )  ->  ( ZZ>=
`  i )  C_  Z )
73 fnssres 6004 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  Fn  Z  /\  ( ZZ>= `  i )  C_  Z )  ->  ( F  |`  ( ZZ>= `  i
) )  Fn  ( ZZ>=
`  i ) )
7469, 72, 73syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  Z )  ->  ( F  |`  ( ZZ>= `  i
) )  Fn  ( ZZ>=
`  i ) )
75743adant3 1081 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F  |`  ( ZZ>= `  i )
)  Fn  ( ZZ>= `  i ) )
76 simp3 1063 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  j  e.  (
ZZ>= `  i ) )
77 fnfvelrn 6356 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  |`  ( ZZ>=
`  i ) )  Fn  ( ZZ>= `  i
)  /\  j  e.  ( ZZ>= `  i )
)  ->  ( ( F  |`  ( ZZ>= `  i
) ) `  j
)  e.  ran  ( F  |`  ( ZZ>= `  i
) ) )
7875, 76, 77syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( F  |`  ( ZZ>= `  i )
) `  j )  e.  ran  ( F  |`  ( ZZ>= `  i )
) )
7967, 78eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  e.  ran  ( F  |`  ( ZZ>= `  i ) ) )
80 eqid 2622 . . . . . . . . . . . . . 14  |-  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  )
8164, 79, 80supxrubd 39297 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
8281ad5ant134 1313 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  ( F `  j )  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
8347, 52, 62, 63, 82xrletrd 11993 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
8483ex 450 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  ->  ( x  <_  ( F `  j
)  ->  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) ) )
8584rexlimdva 3031 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z )  ->  ( E. j  e.  ( ZZ>=
`  i ) x  <_  ( F `  j )  ->  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  ) ) )
8685ralimdva 2962 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. i  e.  Z  E. j  e.  ( ZZ>= `  i ) x  <_ 
( F `  j
)  ->  A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) ) )
8786reximdva 3017 . . . . . . 7  |-  ( ph  ->  ( E. x  e.  RR  A. i  e.  Z  E. j  e.  ( ZZ>= `  i )
x  <_  ( F `  j )  ->  E. x  e.  RR  A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) ) )
8845, 87mpd 15 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  ) )
8988idi 2 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  ) )
90 fveq2 6191 . . . . . . . . . . . 12  |-  ( n  =  i  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  i )
)
9190reseq2d 5396 . . . . . . . . . . 11  |-  ( n  =  i  ->  ( F  |`  ( ZZ>= `  n
) )  =  ( F  |`  ( ZZ>= `  i ) ) )
9291rneqd 5353 . . . . . . . . . 10  |-  ( n  =  i  ->  ran  ( F  |`  ( ZZ>= `  n ) )  =  ran  ( F  |`  ( ZZ>= `  i )
) )
9392supeq1d 8352 . . . . . . . . 9  |-  ( n  =  i  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )
)
94 eqcom 2629 . . . . . . . . . . 11  |-  ( n  =  i  <->  i  =  n )
9594imbi1i 339 . . . . . . . . . 10  |-  ( ( n  =  i  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )
)  <->  ( i  =  n  ->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  ) ) )
96 eqcom 2629 . . . . . . . . . . 11  |-  ( sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )  <->  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)
9796imbi2i 326 . . . . . . . . . 10  |-  ( ( i  =  n  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )
)  <->  ( i  =  n  ->  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) )
9895, 97bitri 264 . . . . . . . . 9  |-  ( ( n  =  i  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )
)  <->  ( i  =  n  ->  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) )
9993, 98mpbi 220 . . . . . . . 8  |-  ( i  =  n  ->  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)
10099breq2d 4665 . . . . . . 7  |-  ( i  =  n  ->  (
x  <_  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )  <->  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) )
101100cbvralv 3171 . . . . . 6  |-  ( A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  )  <->  A. n  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  ) )
102101rexbii 3041 . . . . 5  |-  ( E. x  e.  RR  A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  )  <->  E. x  e.  RR  A. n  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  ) )
10389, 102sylib 208 . . . 4  |-  ( ph  ->  E. x  e.  RR  A. n  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) )
10438, 39rnmptbd2 39464 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  A. n  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  <->  E. x  e.  RR  A. y  e.  ran  (
n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  ) ) x  <_  y
) )
105103, 104mpbid 222 . . 3  |-  ( ph  ->  E. x  e.  RR  A. y  e.  ran  (
n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  ) ) x  <_  y
)
106 infxrre 12166 . . 3  |-  ( ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) )  C_  RR  /\  ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) x  <_  y )  -> inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) , 
RR* ,  <  )  = inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) ,  RR ,  <  ) )
10737, 41, 105, 106syl3anc 1326 . 2  |-  ( ph  -> inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) ,  RR* ,  <  )  = inf ( ran  (
n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  ) ) ,  RR ,  <  ) )
108 fveq2 6191 . . . . . . . . 9  |-  ( n  =  k  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  k )
)
109108reseq2d 5396 . . . . . . . 8  |-  ( n  =  k  ->  ( F  |`  ( ZZ>= `  n
) )  =  ( F  |`  ( ZZ>= `  k ) ) )
110109rneqd 5353 . . . . . . 7  |-  ( n  =  k  ->  ran  ( F  |`  ( ZZ>= `  n ) )  =  ran  ( F  |`  ( ZZ>= `  k )
) )
111110supeq1d 8352 . . . . . 6  |-  ( n  =  k  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
)
112111cbvmptv 4750 . . . . 5  |-  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)  =  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
)
113112rneqi 5352 . . . 4  |-  ran  (
n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  ) )  =  ran  (
k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k )
) ,  RR* ,  <  ) )
114113infeq1i 8384 . . 3  |- inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) ,  RR ,  <  )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
) ,  RR ,  <  )
115114a1i 11 . 2  |-  ( ph  -> inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) ,  RR ,  <  )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k
) ) ,  RR* ,  <  ) ) ,  RR ,  <  )
)
1165, 107, 1153eqtrd 2660 1  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
) ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888   supcsup 8346  infcinf 8347   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   limsupclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-ico 12181  df-fz 12327  df-fl 12593  df-ceil 12594  df-limsup 14202
This theorem is referenced by:  supcnvlimsup  39972
  Copyright terms: Public domain W3C validator