| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfl1dim2N | Structured version Visualization version Unicode version | ||
| Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim 34408 may be more compatible with lspsn 19002. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lfl1dim.v |
|
| lfl1dim.d |
|
| lfl1dim.f |
|
| lfl1dim.l |
|
| lfl1dim.k |
|
| lfl1dim.t |
|
| lfl1dim.w |
|
| lfl1dim.g |
|
| Ref | Expression |
|---|---|
| lfl1dim2N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfl1dim.w |
. . . . . . . . 9
| |
| 2 | lveclmod 19106 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl 17 |
. . . . . . . 8
|
| 4 | lfl1dim.d |
. . . . . . . . 9
| |
| 5 | lfl1dim.k |
. . . . . . . . 9
| |
| 6 | eqid 2622 |
. . . . . . . . 9
| |
| 7 | 4, 5, 6 | lmod0cl 18889 |
. . . . . . . 8
|
| 8 | 3, 7 | syl 17 |
. . . . . . 7
|
| 9 | 8 | ad2antrr 762 |
. . . . . 6
|
| 10 | simpr 477 |
. . . . . . 7
| |
| 11 | lfl1dim.v |
. . . . . . . 8
| |
| 12 | lfl1dim.f |
. . . . . . . 8
| |
| 13 | lfl1dim.t |
. . . . . . . 8
| |
| 14 | 3 | ad2antrr 762 |
. . . . . . . 8
|
| 15 | lfl1dim.g |
. . . . . . . . 9
| |
| 16 | 15 | ad2antrr 762 |
. . . . . . . 8
|
| 17 | 11, 4, 12, 5, 13, 6, 14, 16 | lfl0sc 34369 |
. . . . . . 7
|
| 18 | 10, 17 | eqtr4d 2659 |
. . . . . 6
|
| 19 | sneq 4187 |
. . . . . . . . . 10
| |
| 20 | 19 | xpeq2d 5139 |
. . . . . . . . 9
|
| 21 | 20 | oveq2d 6666 |
. . . . . . . 8
|
| 22 | 21 | eqeq2d 2632 |
. . . . . . 7
|
| 23 | 22 | rspcev 3309 |
. . . . . 6
|
| 24 | 9, 18, 23 | syl2anc 693 |
. . . . 5
|
| 25 | 24 | a1d 25 |
. . . 4
|
| 26 | 8 | ad3antrrr 766 |
. . . . . 6
|
| 27 | lfl1dim.l |
. . . . . . . . . 10
| |
| 28 | 3 | ad3antrrr 766 |
. . . . . . . . . 10
|
| 29 | simpllr 799 |
. . . . . . . . . 10
| |
| 30 | 11, 12, 27, 28, 29 | lkrssv 34383 |
. . . . . . . . 9
|
| 31 | 3 | adantr 481 |
. . . . . . . . . . . . 13
|
| 32 | 15 | adantr 481 |
. . . . . . . . . . . . 13
|
| 33 | 4, 6, 11, 12, 27 | lkr0f 34381 |
. . . . . . . . . . . . 13
|
| 34 | 31, 32, 33 | syl2anc 693 |
. . . . . . . . . . . 12
|
| 35 | 34 | biimpar 502 |
. . . . . . . . . . 11
|
| 36 | 35 | sseq1d 3632 |
. . . . . . . . . 10
|
| 37 | 36 | biimpa 501 |
. . . . . . . . 9
|
| 38 | 30, 37 | eqssd 3620 |
. . . . . . . 8
|
| 39 | 4, 6, 11, 12, 27 | lkr0f 34381 |
. . . . . . . . 9
|
| 40 | 28, 29, 39 | syl2anc 693 |
. . . . . . . 8
|
| 41 | 38, 40 | mpbid 222 |
. . . . . . 7
|
| 42 | 15 | ad3antrrr 766 |
. . . . . . . 8
|
| 43 | 11, 4, 12, 5, 13, 6, 28, 42 | lfl0sc 34369 |
. . . . . . 7
|
| 44 | 41, 43 | eqtr4d 2659 |
. . . . . 6
|
| 45 | 26, 44, 23 | syl2anc 693 |
. . . . 5
|
| 46 | 45 | ex 450 |
. . . 4
|
| 47 | eqid 2622 |
. . . . . 6
| |
| 48 | 1 | ad2antrr 762 |
. . . . . 6
|
| 49 | 15 | ad2antrr 762 |
. . . . . . 7
|
| 50 | simprr 796 |
. . . . . . 7
| |
| 51 | 11, 4, 6, 47, 12, 27 | lkrshp 34392 |
. . . . . . 7
|
| 52 | 48, 49, 50, 51 | syl3anc 1326 |
. . . . . 6
|
| 53 | simplr 792 |
. . . . . . 7
| |
| 54 | simprl 794 |
. . . . . . 7
| |
| 55 | 11, 4, 6, 47, 12, 27 | lkrshp 34392 |
. . . . . . 7
|
| 56 | 48, 53, 54, 55 | syl3anc 1326 |
. . . . . 6
|
| 57 | 47, 48, 52, 56 | lshpcmp 34275 |
. . . . 5
|
| 58 | 1 | ad3antrrr 766 |
. . . . . . 7
|
| 59 | 15 | ad3antrrr 766 |
. . . . . . 7
|
| 60 | simpllr 799 |
. . . . . . 7
| |
| 61 | simpr 477 |
. . . . . . 7
| |
| 62 | 4, 5, 13, 11, 12, 27 | eqlkr2 34387 |
. . . . . . 7
|
| 63 | 58, 59, 60, 61, 62 | syl121anc 1331 |
. . . . . 6
|
| 64 | 63 | ex 450 |
. . . . 5
|
| 65 | 57, 64 | sylbid 230 |
. . . 4
|
| 66 | 25, 46, 65 | pm2.61da2ne 2882 |
. . 3
|
| 67 | 1 | ad2antrr 762 |
. . . . . . 7
|
| 68 | 15 | ad2antrr 762 |
. . . . . . 7
|
| 69 | simpr 477 |
. . . . . . 7
| |
| 70 | 11, 4, 5, 13, 12, 27, 67, 68, 69 | lkrscss 34385 |
. . . . . 6
|
| 71 | 70 | ex 450 |
. . . . 5
|
| 72 | fveq2 6191 |
. . . . . . 7
| |
| 73 | 72 | sseq2d 3633 |
. . . . . 6
|
| 74 | 73 | biimprcd 240 |
. . . . 5
|
| 75 | 71, 74 | syl6 35 |
. . . 4
|
| 76 | 75 | rexlimdv 3030 |
. . 3
|
| 77 | 66, 76 | impbid 202 |
. 2
|
| 78 | 77 | rabbidva 3188 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lshyp 34264 df-lfl 34345 df-lkr 34373 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |