MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspexch Structured version   Visualization version   Unicode version

Theorem lspexch 19129
Description: Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 19130 vs. lspexchn2 19131); look for lspexch 19129 and prcom 4267 in same proof. TODO: would a hypothesis of  -.  X  e.  ( N `  { Z } ) instead of  ( N `  { X } )  =/=  ( N { Z } ) ` be better overall? This would be shorter and also satisfy the 
X  =/=  .0. condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the 
=/= pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015.)
Hypotheses
Ref Expression
lspexch.v  |-  V  =  ( Base `  W
)
lspexch.o  |-  .0.  =  ( 0g `  W )
lspexch.n  |-  N  =  ( LSpan `  W )
lspexch.w  |-  ( ph  ->  W  e.  LVec )
lspexch.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
lspexch.y  |-  ( ph  ->  Y  e.  V )
lspexch.z  |-  ( ph  ->  Z  e.  V )
lspexch.q  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
lspexch.e  |-  ( ph  ->  X  e.  ( N `
 { Y ,  Z } ) )
Assertion
Ref Expression
lspexch  |-  ( ph  ->  Y  e.  ( N `
 { X ,  Z } ) )

Proof of Theorem lspexch
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspexch.e . . 3  |-  ( ph  ->  X  e.  ( N `
 { Y ,  Z } ) )
2 lspexch.v . . . 4  |-  V  =  ( Base `  W
)
3 eqid 2622 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
4 eqid 2622 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
5 eqid 2622 . . . 4  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
6 eqid 2622 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
7 lspexch.n . . . 4  |-  N  =  ( LSpan `  W )
8 lspexch.w . . . . 5  |-  ( ph  ->  W  e.  LVec )
9 lveclmod 19106 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
108, 9syl 17 . . . 4  |-  ( ph  ->  W  e.  LMod )
11 lspexch.y . . . 4  |-  ( ph  ->  Y  e.  V )
12 lspexch.z . . . 4  |-  ( ph  ->  Z  e.  V )
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 19094 . . 3  |-  ( ph  ->  ( X  e.  ( N `  { Y ,  Z } )  <->  E. j  e.  ( Base `  (Scalar `  W ) ) E. k  e.  ( Base `  (Scalar `  W )
) X  =  ( ( j ( .s
`  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) ) )
141, 13mpbid 222 . 2  |-  ( ph  ->  E. j  e.  (
Base `  (Scalar `  W
) ) E. k  e.  ( Base `  (Scalar `  W ) ) X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )
15 eqid 2622 . . . . . . . 8  |-  ( -g `  W )  =  (
-g `  W )
16 eqid 2622 . . . . . . . 8  |-  ( invg `  (Scalar `  W ) )  =  ( invg `  (Scalar `  W ) )
1783ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  W  e.  LVec )
1817, 9syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  W  e.  LMod )
19 simp2r 1088 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
k  e.  ( Base `  (Scalar `  W )
) )
20 lspexch.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
21203ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  X  e.  ( V  \  {  .0.  } ) )
2221eldifad 3586 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  X  e.  V )
23123ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  Z  e.  V )
242, 3, 15, 6, 4, 5, 16, 18, 19, 22, 23lmodsubvs 18919 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( X ( -g `  W ) ( k ( .s `  W
) Z ) )  =  ( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) )
25 simp3 1063 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )
2625eqcomd 2628 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( j ( .s `  W ) Y ) ( +g  `  W ) ( k ( .s `  W
) Z ) )  =  X )
27103ad2ant1 1082 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  W  e.  LMod )
28 lmodgrp 18870 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  W  e. 
Grp )
2927, 28syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  W  e.  Grp )
302, 4, 6, 5lmodvscl 18880 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  k  e.  ( Base `  (Scalar `  W ) )  /\  Z  e.  V )  ->  ( k ( .s
`  W ) Z )  e.  V )
3118, 19, 23, 30syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( k ( .s
`  W ) Z )  e.  V )
32 simp2l 1087 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
j  e.  ( Base `  (Scalar `  W )
) )
33113ad2ant1 1082 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  Y  e.  V )
342, 4, 6, 5lmodvscl 18880 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  j  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )  ->  ( j ( .s
`  W ) Y )  e.  V )
3518, 32, 33, 34syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( j ( .s
`  W ) Y )  e.  V )
362, 3, 15grpsubadd 17503 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  ( X  e.  V  /\  ( k ( .s
`  W ) Z )  e.  V  /\  ( j ( .s
`  W ) Y )  e.  V ) )  ->  ( ( X ( -g `  W
) ( k ( .s `  W ) Z ) )  =  ( j ( .s
`  W ) Y )  <->  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) )  =  X ) )
3729, 22, 31, 35, 36syl13anc 1328 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( X (
-g `  W )
( k ( .s
`  W ) Z ) )  =  ( j ( .s `  W ) Y )  <-> 
( ( j ( .s `  W ) Y ) ( +g  `  W ) ( k ( .s `  W
) Z ) )  =  X ) )
3826, 37mpbird 247 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( X ( -g `  W ) ( k ( .s `  W
) Z ) )  =  ( j ( .s `  W ) Y ) )
3924, 38eqtr3d 2658 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `
 k ) ( .s `  W ) Z ) )  =  ( j ( .s
`  W ) Y ) )
40 eqid 2622 . . . . . . 7  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
41 eqid 2622 . . . . . . 7  |-  ( invr `  (Scalar `  W )
)  =  ( invr `  (Scalar `  W )
)
42 lspexch.q . . . . . . . . . 10  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
43423ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( N `  { X } )  =/=  ( N `  { Z } ) )
44 lspexch.o . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  W )
4517adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  W  e.  LVec )
4623adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  Z  e.  V
)
4725adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  X  =  ( ( j ( .s
`  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )
48 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( 0g `  (Scalar `  W ) )  ->  ( j ( .s `  W ) Y )  =  ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )
4948oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( j  =  ( 0g `  (Scalar `  W ) )  ->  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) )  =  ( ( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )
502, 4, 6, 40, 44lmod0vs 18896 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) Y )  =  .0.  )
5118, 33, 50syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Y )  =  .0.  )
5251oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) )  =  (  .0.  ( +g  `  W ) ( k ( .s `  W
) Z ) ) )
532, 3, 44lmod0vlid 18893 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  LMod  /\  (
k ( .s `  W ) Z )  e.  V )  -> 
(  .0.  ( +g  `  W ) ( k ( .s `  W
) Z ) )  =  ( k ( .s `  W ) Z ) )
5418, 31, 53syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
(  .0.  ( +g  `  W ) ( k ( .s `  W
) Z ) )  =  ( k ( .s `  W ) Z ) )
5552, 54eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) )  =  ( k ( .s
`  W ) Z ) )
5649, 55sylan9eqr 2678 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) )  =  ( k ( .s `  W ) Z ) )
5747, 56eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  X  =  ( k ( .s `  W ) Z ) )
582, 6, 4, 5, 7, 18, 19, 23lspsneli 19001 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( k ( .s
`  W ) Z )  e.  ( N `
 { Z }
) )
5958adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  ( k ( .s `  W ) Z )  e.  ( N `  { Z } ) )
6057, 59eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  X  e.  ( N `  { Z } ) )
61 eldifsni 4320 . . . . . . . . . . . . . 14  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  =/=  .0.  )
6221, 61syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  X  =/=  .0.  )
6362adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  X  =/=  .0.  )
642, 44, 7, 45, 46, 60, 63lspsneleq 19115 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  ( Base `  (Scalar `  W )
)  /\  k  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) ) )  /\  j  =  ( 0g `  (Scalar `  W ) ) )  ->  ( N `  { X } )  =  ( N `  { Z } ) )
6564ex 450 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( j  =  ( 0g `  (Scalar `  W ) )  -> 
( N `  { X } )  =  ( N `  { Z } ) ) )
6665necon3d 2815 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( N `  { X } )  =/=  ( N `  { Z } )  ->  j  =/=  ( 0g `  (Scalar `  W ) ) ) )
6743, 66mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
j  =/=  ( 0g
`  (Scalar `  W )
) )
68 eldifsn 4317 . . . . . . . 8  |-  ( j  e.  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } )  <-> 
( j  e.  (
Base `  (Scalar `  W
) )  /\  j  =/=  ( 0g `  (Scalar `  W ) ) ) )
6932, 67, 68sylanbrc 698 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
j  e.  ( (
Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } ) )
704lmodfgrp 18872 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
7127, 70syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
(Scalar `  W )  e.  Grp )
725, 16grpinvcl 17467 . . . . . . . . . 10  |-  ( ( (Scalar `  W )  e.  Grp  /\  k  e.  ( Base `  (Scalar `  W ) ) )  ->  ( ( invg `  (Scalar `  W ) ) `  k )  e.  (
Base `  (Scalar `  W
) ) )
7371, 19, 72syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( invg `  (Scalar `  W )
) `  k )  e.  ( Base `  (Scalar `  W ) ) )
742, 4, 6, 5lmodvscl 18880 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 k )  e.  ( Base `  (Scalar `  W ) )  /\  Z  e.  V )  ->  ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z )  e.  V )
7518, 73, 23, 74syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z )  e.  V )
762, 3lmodvacl 18877 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  (
( ( invg `  (Scalar `  W )
) `  k )
( .s `  W
) Z )  e.  V )  ->  ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) )  e.  V
)
7718, 22, 75, 76syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `
 k ) ( .s `  W ) Z ) )  e.  V )
782, 6, 4, 5, 40, 41, 17, 69, 77, 33lvecinv 19113 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) )  =  ( j ( .s `  W ) Y )  <-> 
Y  =  ( ( ( invr `  (Scalar `  W ) ) `  j ) ( .s
`  W ) ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) ) ) )
7939, 78mpbid 222 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  Y  =  ( (
( invr `  (Scalar `  W
) ) `  j
) ( .s `  W ) ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) ) )
80 eqid 2622 . . . . . . 7  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
812, 80, 7, 18, 22, 23lspprcl 18978 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( N `  { X ,  Z }
)  e.  ( LSubSp `  W ) )
824lvecdrng 19105 . . . . . . . 8  |-  ( W  e.  LVec  ->  (Scalar `  W )  e.  DivRing )
8317, 82syl 17 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
(Scalar `  W )  e.  DivRing )
845, 40, 41drnginvrcl 18764 . . . . . . 7  |-  ( ( (Scalar `  W )  e.  DivRing  /\  j  e.  ( Base `  (Scalar `  W
) )  /\  j  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( invr `  (Scalar `  W )
) `  j )  e.  ( Base `  (Scalar `  W ) ) )
8583, 32, 67, 84syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( invr `  (Scalar `  W ) ) `  j )  e.  (
Base `  (Scalar `  W
) ) )
86 eqid 2622 . . . . . . . . . 10  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
872, 4, 6, 86lmodvs1 18891 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
8818, 22, 87syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X )  =  X )
8988oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) )  =  ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) )
904lmodring 18871 . . . . . . . . 9  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
915, 86ringidcl 18568 . . . . . . . . 9  |-  ( (Scalar `  W )  e.  Ring  -> 
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) ) )
9218, 90, 913syl 18 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) ) )
932, 3, 6, 4, 5, 7, 18, 92, 73, 22, 23lsppreli 19090 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) )  e.  ( N `  { X ,  Z } ) )
9489, 93eqeltrrd 2702 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `
 k ) ( .s `  W ) Z ) )  e.  ( N `  { X ,  Z }
) )
954, 6, 5, 80lssvscl 18955 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( N `  { X ,  Z }
)  e.  ( LSubSp `  W ) )  /\  ( ( ( invr `  (Scalar `  W )
) `  j )  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) )  e.  ( N `  { X ,  Z } ) ) )  ->  ( (
( invr `  (Scalar `  W
) ) `  j
) ( .s `  W ) ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) )  e.  ( N `  { X ,  Z }
) )
9618, 81, 85, 94, 95syl22anc 1327 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  j )
( .s `  W
) ( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `  k ) ( .s
`  W ) Z ) ) )  e.  ( N `  { X ,  Z }
) )
9779, 96eqeltrd 2701 . . . 4  |-  ( (
ph  /\  ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( j ( .s `  W
) Y ) ( +g  `  W ) ( k ( .s
`  W ) Z ) ) )  ->  Y  e.  ( N `  { X ,  Z } ) )
98973exp 1264 . . 3  |-  ( ph  ->  ( ( j  e.  ( Base `  (Scalar `  W ) )  /\  k  e.  ( Base `  (Scalar `  W )
) )  ->  ( X  =  ( (
j ( .s `  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) )  ->  Y  e.  ( N `  { X ,  Z } ) ) ) )
9998rexlimdvv 3037 . 2  |-  ( ph  ->  ( E. j  e.  ( Base `  (Scalar `  W ) ) E. k  e.  ( Base `  (Scalar `  W )
) X  =  ( ( j ( .s
`  W ) Y ) ( +g  `  W
) ( k ( .s `  W ) Z ) )  ->  Y  e.  ( N `  { X ,  Z } ) ) )
10014, 99mpd 15 1  |-  ( ph  ->  Y  e.  ( N `
 { X ,  Z } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424   1rcur 18501   Ringcrg 18547   invrcinvr 18671   DivRingcdr 18747   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lspexchn1  19130  lspindp1  19133  mapdh8ab  37066  mapdh8ad  37068  mapdh8b  37069  mapdh8c  37070  mapdh8e  37073
  Copyright terms: Public domain W3C validator