MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegldg Structured version   Visualization version   Unicode version

Theorem mdegldg 23826
Description: A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d  |-  D  =  ( I mDeg  R )
mdegval.p  |-  P  =  ( I mPoly  R )
mdegval.b  |-  B  =  ( Base `  P
)
mdegval.z  |-  .0.  =  ( 0g `  R )
mdegval.a  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
mdegval.h  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
mdegldg.y  |-  Y  =  ( 0g `  P
)
Assertion
Ref Expression
mdegldg  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  E. x  e.  A  ( ( F `  x )  =/=  .0.  /\  ( H `
 x )  =  ( D `  F
) ) )
Distinct variable groups:    A, h    m, I    .0. , h    x, A   
x, B    x, F    x, H    h, I    x, R    x,  .0.    h, m    x, D
Allowed substitution hints:    A( m)    B( h, m)    D( h, m)    P( x, h, m)    R( h, m)    F( h, m)    H( h, m)    I( x)    Y( x, h, m)    .0. ( m)

Proof of Theorem mdegldg
StepHypRef Expression
1 mdegval.d . . . . 5  |-  D  =  ( I mDeg  R )
2 mdegval.p . . . . 5  |-  P  =  ( I mPoly  R )
3 mdegval.b . . . . 5  |-  B  =  ( Base `  P
)
4 mdegval.z . . . . 5  |-  .0.  =  ( 0g `  R )
5 mdegval.a . . . . 5  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
6 mdegval.h . . . . 5  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
71, 2, 3, 4, 5, 6mdegval 23823 . . . 4  |-  ( F  e.  B  ->  ( D `  F )  =  sup ( ( H
" ( F supp  .0.  ) ) ,  RR* ,  <  ) )
873ad2ant2 1083 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ( D `  F )  =  sup ( ( H
" ( F supp  .0.  ) ) ,  RR* ,  <  ) )
92, 3mplrcl 19490 . . . . . . . 8  |-  ( F  e.  B  ->  I  e.  _V )
1093ad2ant2 1083 . . . . . . 7  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  I  e.  _V )
115, 6tdeglem1 23818 . . . . . . 7  |-  ( I  e.  _V  ->  H : A --> NN0 )
1210, 11syl 17 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  H : A --> NN0 )
1312ffund 6049 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  Fun  H )
14 simp2 1062 . . . . . . 7  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  F  e.  B )
15 simp1 1061 . . . . . . 7  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  R  e.  Ring )
162, 3, 4, 14, 15mplelsfi 19491 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  F finSupp  .0.  )
1716fsuppimpd 8282 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ( F supp  .0.  )  e.  Fin )
18 imafi 8259 . . . . 5  |-  ( ( Fun  H  /\  ( F supp  .0.  )  e.  Fin )  ->  ( H "
( F supp  .0.  )
)  e.  Fin )
1913, 17, 18syl2anc 693 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ( H " ( F supp  .0.  ) )  e.  Fin )
20 simp3 1063 . . . . . . 7  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  F  =/=  Y )
21 mdegldg.y . . . . . . . 8  |-  Y  =  ( 0g `  P
)
22 ringgrp 18552 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Grp )
23223ad2ant1 1082 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  R  e.  Grp )
242, 5, 4, 21, 10, 23mpl0 19441 . . . . . . 7  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  Y  =  ( A  X.  {  .0.  } ) )
2520, 24neeqtrd 2863 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  F  =/=  ( A  X.  {  .0.  } ) )
26 eqid 2622 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
272, 26, 3, 5, 14mplelf 19433 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  F : A --> ( Base `  R
) )
2827ffnd 6046 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  F  Fn  A )
29 fvex 6201 . . . . . . . . 9  |-  ( 0g
`  R )  e. 
_V
304, 29eqeltri 2697 . . . . . . . 8  |-  .0.  e.  _V
31 ovex 6678 . . . . . . . . . 10  |-  ( NN0 
^m  I )  e. 
_V
325, 31rabex2 4815 . . . . . . . . 9  |-  A  e. 
_V
33 fnsuppeq0 7323 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  A  e.  _V  /\  .0.  e.  _V )  ->  (
( F supp  .0.  )  =  (/)  <->  F  =  ( A  X.  {  .0.  }
) ) )
3432, 33mp3an2 1412 . . . . . . . 8  |-  ( ( F  Fn  A  /\  .0.  e.  _V )  -> 
( ( F supp  .0.  )  =  (/)  <->  F  =  ( A  X.  {  .0.  } ) ) )
3528, 30, 34sylancl 694 . . . . . . 7  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  (
( F supp  .0.  )  =  (/)  <->  F  =  ( A  X.  {  .0.  }
) ) )
3635necon3bid 2838 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  (
( F supp  .0.  )  =/=  (/)  <->  F  =/=  ( A  X.  {  .0.  }
) ) )
3725, 36mpbird 247 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ( F supp  .0.  )  =/=  (/) )
3812ffnd 6046 . . . . . . 7  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  H  Fn  A )
39 suppssdm 7308 . . . . . . . 8  |-  ( F supp 
.0.  )  C_  dom  F
40 fdm 6051 . . . . . . . . 9  |-  ( F : A --> ( Base `  R )  ->  dom  F  =  A )
4127, 40syl 17 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  dom  F  =  A )
4239, 41syl5sseq 3653 . . . . . . 7  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ( F supp  .0.  )  C_  A
)
43 fnimaeq0 6013 . . . . . . 7  |-  ( ( H  Fn  A  /\  ( F supp  .0.  )  C_  A )  ->  (
( H " ( F supp  .0.  ) )  =  (/) 
<->  ( F supp  .0.  )  =  (/) ) )
4438, 42, 43syl2anc 693 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  (
( H " ( F supp  .0.  ) )  =  (/) 
<->  ( F supp  .0.  )  =  (/) ) )
4544necon3bid 2838 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  (
( H " ( F supp  .0.  ) )  =/=  (/) 
<->  ( F supp  .0.  )  =/=  (/) ) )
4637, 45mpbird 247 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ( H " ( F supp  .0.  ) )  =/=  (/) )
47 imassrn 5477 . . . . . 6  |-  ( H
" ( F supp  .0.  ) )  C_  ran  H
48 frn 6053 . . . . . . 7  |-  ( H : A --> NN0  ->  ran 
H  C_  NN0 )
4912, 48syl 17 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ran  H 
C_  NN0 )
5047, 49syl5ss 3614 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ( H " ( F supp  .0.  ) )  C_  NN0 )
51 nn0ssre 11296 . . . . . 6  |-  NN0  C_  RR
52 ressxr 10083 . . . . . 6  |-  RR  C_  RR*
5351, 52sstri 3612 . . . . 5  |-  NN0  C_  RR*
5450, 53syl6ss 3615 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ( H " ( F supp  .0.  ) )  C_  RR* )
55 xrltso 11974 . . . . 5  |-  <  Or  RR*
56 fisupcl 8375 . . . . 5  |-  ( (  <  Or  RR*  /\  (
( H " ( F supp  .0.  ) )  e. 
Fin  /\  ( H " ( F supp  .0.  )
)  =/=  (/)  /\  ( H " ( F supp  .0.  ) )  C_  RR* )
)  ->  sup (
( H " ( F supp  .0.  ) ) , 
RR* ,  <  )  e.  ( H " ( F supp  .0.  ) ) )
5755, 56mpan 706 . . . 4  |-  ( ( ( H " ( F supp  .0.  ) )  e. 
Fin  /\  ( H " ( F supp  .0.  )
)  =/=  (/)  /\  ( H " ( F supp  .0.  ) )  C_  RR* )  ->  sup ( ( H
" ( F supp  .0.  ) ) ,  RR* ,  <  )  e.  ( H " ( F supp 
.0.  ) ) )
5819, 46, 54, 57syl3anc 1326 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  sup ( ( H "
( F supp  .0.  )
) ,  RR* ,  <  )  e.  ( H "
( F supp  .0.  )
) )
598, 58eqeltrd 2701 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ( D `  F )  e.  ( H " ( F supp  .0.  ) ) )
60 fvelimab 6253 . . . 4  |-  ( ( H  Fn  A  /\  ( F supp  .0.  )  C_  A )  ->  (
( D `  F
)  e.  ( H
" ( F supp  .0.  ) )  <->  E. x  e.  ( F supp  .0.  )
( H `  x
)  =  ( D `
 F ) ) )
6138, 42, 60syl2anc 693 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  (
( D `  F
)  e.  ( H
" ( F supp  .0.  ) )  <->  E. x  e.  ( F supp  .0.  )
( H `  x
)  =  ( D `
 F ) ) )
62 rexsupp 7313 . . . . 5  |-  ( ( F  Fn  A  /\  A  e.  _V  /\  .0.  e.  _V )  ->  ( E. x  e.  ( F supp  .0.  ) ( H `
 x )  =  ( D `  F
)  <->  E. x  e.  A  ( ( F `  x )  =/=  .0.  /\  ( H `  x
)  =  ( D `
 F ) ) ) )
6332, 30, 62mp3an23 1416 . . . 4  |-  ( F  Fn  A  ->  ( E. x  e.  ( F supp  .0.  ) ( H `
 x )  =  ( D `  F
)  <->  E. x  e.  A  ( ( F `  x )  =/=  .0.  /\  ( H `  x
)  =  ( D `
 F ) ) ) )
6428, 63syl 17 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  ( E. x  e.  ( F supp  .0.  ) ( H `
 x )  =  ( D `  F
)  <->  E. x  e.  A  ( ( F `  x )  =/=  .0.  /\  ( H `  x
)  =  ( D `
 F ) ) ) )
6561, 64bitrd 268 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  (
( D `  F
)  e.  ( H
" ( F supp  .0.  ) )  <->  E. x  e.  A  ( ( F `  x )  =/=  .0.  /\  ( H `
 x )  =  ( D `  F
) ) ) )
6659, 65mpbid 222 1  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
Y )  ->  E. x  e.  A  ( ( F `  x )  =/=  .0.  /\  ( H `
 x )  =  ( D `  F
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177    |-> cmpt 4729    Or wor 5034    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295    ^m cmap 7857   Fincfn 7955   supcsup 8346   RRcr 9935   RR*cxr 10073    < clt 10074   NNcn 11020   NN0cn0 11292   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101   Grpcgrp 17422   Ringcrg 18547   mPoly cmpl 19353  ℂfldccnfld 19746   mDeg cmdg 23813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-psr 19356  df-mpl 19358  df-cnfld 19747  df-mdeg 23815
This theorem is referenced by:  mdegnn0cl  23831  deg1ldg  23852
  Copyright terms: Public domain W3C validator