MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegleb Structured version   Visualization version   Unicode version

Theorem mdegleb 23824
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d  |-  D  =  ( I mDeg  R )
mdegval.p  |-  P  =  ( I mPoly  R )
mdegval.b  |-  B  =  ( Base `  P
)
mdegval.z  |-  .0.  =  ( 0g `  R )
mdegval.a  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
mdegval.h  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
Assertion
Ref Expression
mdegleb  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( D `  F )  <_  G  <->  A. x  e.  A  ( G  <  ( H `
 x )  -> 
( F `  x
)  =  .0.  )
) )
Distinct variable groups:    A, h    m, I    .0. , h    x, A   
x, B    x, F    x, G    x, H    h, I    x, R    x,  .0.    h, m
Allowed substitution hints:    A( m)    B( h, m)    D( x, h, m)    P( x, h, m)    R( h, m)    F( h, m)    G( h, m)    H( h, m)    I( x)    .0. ( m)

Proof of Theorem mdegleb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mdegval.d . . . . 5  |-  D  =  ( I mDeg  R )
2 mdegval.p . . . . 5  |-  P  =  ( I mPoly  R )
3 mdegval.b . . . . 5  |-  B  =  ( Base `  P
)
4 mdegval.z . . . . 5  |-  .0.  =  ( 0g `  R )
5 mdegval.a . . . . 5  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
6 mdegval.h . . . . 5  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
71, 2, 3, 4, 5, 6mdegval 23823 . . . 4  |-  ( F  e.  B  ->  ( D `  F )  =  sup ( ( H
" ( F supp  .0.  ) ) ,  RR* ,  <  ) )
87adantr 481 . . 3  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( D `  F
)  =  sup (
( H " ( F supp  .0.  ) ) , 
RR* ,  <  ) )
98breq1d 4663 . 2  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( D `  F )  <_  G  <->  sup ( ( H "
( F supp  .0.  )
) ,  RR* ,  <  )  <_  G ) )
10 imassrn 5477 . . . 4  |-  ( H
" ( F supp  .0.  ) )  C_  ran  H
112, 3mplrcl 19490 . . . . . . . 8  |-  ( F  e.  B  ->  I  e.  _V )
1211adantr 481 . . . . . . 7  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  I  e.  _V )
135, 6tdeglem1 23818 . . . . . . 7  |-  ( I  e.  _V  ->  H : A --> NN0 )
1412, 13syl 17 . . . . . 6  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  H : A --> NN0 )
15 frn 6053 . . . . . 6  |-  ( H : A --> NN0  ->  ran 
H  C_  NN0 )
1614, 15syl 17 . . . . 5  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  ran  H  C_  NN0 )
17 nn0ssre 11296 . . . . . 6  |-  NN0  C_  RR
18 ressxr 10083 . . . . . 6  |-  RR  C_  RR*
1917, 18sstri 3612 . . . . 5  |-  NN0  C_  RR*
2016, 19syl6ss 3615 . . . 4  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  ran  H  C_  RR* )
2110, 20syl5ss 3614 . . 3  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( H " ( F supp  .0.  ) )  C_  RR* )
22 supxrleub 12156 . . 3  |-  ( ( ( H " ( F supp  .0.  ) )  C_  RR* 
/\  G  e.  RR* )  ->  ( sup (
( H " ( F supp  .0.  ) ) , 
RR* ,  <  )  <_  G 
<-> 
A. y  e.  ( H " ( F supp 
.0.  ) ) y  <_  G ) )
2321, 22sylancom 701 . 2  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( sup ( ( H " ( F supp 
.0.  ) ) , 
RR* ,  <  )  <_  G 
<-> 
A. y  e.  ( H " ( F supp 
.0.  ) ) y  <_  G ) )
24 ffn 6045 . . . . 5  |-  ( H : A --> NN0  ->  H  Fn  A )
2514, 24syl 17 . . . 4  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  H  Fn  A )
26 suppssdm 7308 . . . . 5  |-  ( F supp 
.0.  )  C_  dom  F
27 eqid 2622 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
28 simpl 473 . . . . . . 7  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  F  e.  B )
292, 27, 3, 5, 28mplelf 19433 . . . . . 6  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  F : A --> ( Base `  R ) )
30 fdm 6051 . . . . . 6  |-  ( F : A --> ( Base `  R )  ->  dom  F  =  A )
3129, 30syl 17 . . . . 5  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  dom  F  =  A )
3226, 31syl5sseq 3653 . . . 4  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( F supp  .0.  )  C_  A )
33 breq1 4656 . . . . 5  |-  ( y  =  ( H `  x )  ->  (
y  <_  G  <->  ( H `  x )  <_  G
) )
3433ralima 6498 . . . 4  |-  ( ( H  Fn  A  /\  ( F supp  .0.  )  C_  A )  ->  ( A. y  e.  ( H " ( F supp  .0.  ) ) y  <_  G 
<-> 
A. x  e.  ( F supp  .0.  ) ( H `  x )  <_  G ) )
3525, 32, 34syl2anc 693 . . 3  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( A. y  e.  ( H " ( F supp  .0.  ) ) y  <_  G  <->  A. x  e.  ( F supp  .0.  )
( H `  x
)  <_  G )
)
36 ffn 6045 . . . . . . . 8  |-  ( F : A --> ( Base `  R )  ->  F  Fn  A )
3729, 36syl 17 . . . . . . 7  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  F  Fn  A )
38 ovex 6678 . . . . . . . . . 10  |-  ( NN0 
^m  I )  e. 
_V
3938rabex 4813 . . . . . . . . 9  |-  { m  e.  ( NN0  ^m  I
)  |  ( `' m " NN )  e.  Fin }  e.  _V
4039a1i 11 . . . . . . . 8  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }  e.  _V )
415, 40syl5eqel 2705 . . . . . . 7  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  A  e.  _V )
42 fvex 6201 . . . . . . . . 9  |-  ( 0g
`  R )  e. 
_V
434, 42eqeltri 2697 . . . . . . . 8  |-  .0.  e.  _V
4443a1i 11 . . . . . . 7  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  .0.  e.  _V )
45 elsuppfn 7303 . . . . . . . 8  |-  ( ( F  Fn  A  /\  A  e.  _V  /\  .0.  e.  _V )  ->  (
x  e.  ( F supp 
.0.  )  <->  ( x  e.  A  /\  ( F `  x )  =/=  .0.  ) ) )
46 fvex 6201 . . . . . . . . . . . 12  |-  ( F `
 x )  e. 
_V
4746biantrur 527 . . . . . . . . . . 11  |-  ( ( F `  x )  =/=  .0.  <->  ( ( F `  x )  e.  _V  /\  ( F `
 x )  =/= 
.0.  ) )
48 eldifsn 4317 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  ( _V  \  {  .0.  } )  <->  ( ( F `  x )  e.  _V  /\  ( F `
 x )  =/= 
.0.  ) )
4947, 48bitr4i 267 . . . . . . . . . 10  |-  ( ( F `  x )  =/=  .0.  <->  ( F `  x )  e.  ( _V  \  {  .0.  } ) )
5049a1i 11 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  A  e.  _V  /\  .0.  e.  _V )  ->  (
( F `  x
)  =/=  .0.  <->  ( F `  x )  e.  ( _V  \  {  .0.  } ) ) )
5150anbi2d 740 . . . . . . . 8  |-  ( ( F  Fn  A  /\  A  e.  _V  /\  .0.  e.  _V )  ->  (
( x  e.  A  /\  ( F `  x
)  =/=  .0.  )  <->  ( x  e.  A  /\  ( F `  x )  e.  ( _V  \  {  .0.  } ) ) ) )
5245, 51bitrd 268 . . . . . . 7  |-  ( ( F  Fn  A  /\  A  e.  _V  /\  .0.  e.  _V )  ->  (
x  e.  ( F supp 
.0.  )  <->  ( x  e.  A  /\  ( F `  x )  e.  ( _V  \  {  .0.  } ) ) ) )
5337, 41, 44, 52syl3anc 1326 . . . . . 6  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( x  e.  ( F supp  .0.  )  <->  ( x  e.  A  /\  ( F `  x )  e.  ( _V  \  {  .0.  } ) ) ) )
5453imbi1d 331 . . . . 5  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( x  e.  ( F supp  .0.  )  ->  ( H `  x
)  <_  G )  <->  ( ( x  e.  A  /\  ( F `  x
)  e.  ( _V 
\  {  .0.  }
) )  ->  ( H `  x )  <_  G ) ) )
55 impexp 462 . . . . . 6  |-  ( ( ( x  e.  A  /\  ( F `  x
)  e.  ( _V 
\  {  .0.  }
) )  ->  ( H `  x )  <_  G )  <->  ( x  e.  A  ->  ( ( F `  x )  e.  ( _V  \  {  .0.  } )  -> 
( H `  x
)  <_  G )
) )
56 con34b 306 . . . . . . . 8  |-  ( ( ( F `  x
)  e.  ( _V 
\  {  .0.  }
)  ->  ( H `  x )  <_  G
)  <->  ( -.  ( H `  x )  <_  G  ->  -.  ( F `  x )  e.  ( _V  \  {  .0.  } ) ) )
57 simplr 792 . . . . . . . . . . 11  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  G  e.  RR* )
5814ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( H `  x )  e.  NN0 )
5919, 58sseldi 3601 . . . . . . . . . . 11  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( H `  x )  e.  RR* )
60 xrltnle 10105 . . . . . . . . . . 11  |-  ( ( G  e.  RR*  /\  ( H `  x )  e.  RR* )  ->  ( G  <  ( H `  x )  <->  -.  ( H `  x )  <_  G ) )
6157, 59, 60syl2anc 693 . . . . . . . . . 10  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( G  <  ( H `  x
)  <->  -.  ( H `  x )  <_  G
) )
6261bicomd 213 . . . . . . . . 9  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( -.  ( H `  x )  <_  G  <->  G  <  ( H `  x ) ) )
63 ianor 509 . . . . . . . . . . 11  |-  ( -.  ( ( F `  x )  e.  _V  /\  ( F `  x
)  =/=  .0.  )  <->  ( -.  ( F `  x )  e.  _V  \/  -.  ( F `  x )  =/=  .0.  ) )
6463, 48xchnxbir 323 . . . . . . . . . 10  |-  ( -.  ( F `  x
)  e.  ( _V 
\  {  .0.  }
)  <->  ( -.  ( F `  x )  e.  _V  \/  -.  ( F `  x )  =/=  .0.  ) )
65 orcom 402 . . . . . . . . . . . 12  |-  ( ( -.  ( F `  x )  e.  _V  \/  -.  ( F `  x )  =/=  .0.  ) 
<->  ( -.  ( F `
 x )  =/= 
.0.  \/  -.  ( F `  x )  e.  _V ) )
6646notnoti 137 . . . . . . . . . . . . 13  |-  -.  -.  ( F `  x )  e.  _V
6766biorfi 422 . . . . . . . . . . . 12  |-  ( -.  ( F `  x
)  =/=  .0.  <->  ( -.  ( F `  x )  =/=  .0.  \/  -.  ( F `  x )  e.  _V ) )
68 nne 2798 . . . . . . . . . . . 12  |-  ( -.  ( F `  x
)  =/=  .0.  <->  ( F `  x )  =  .0.  )
6965, 67, 683bitr2i 288 . . . . . . . . . . 11  |-  ( ( -.  ( F `  x )  e.  _V  \/  -.  ( F `  x )  =/=  .0.  ) 
<->  ( F `  x
)  =  .0.  )
7069a1i 11 . . . . . . . . . 10  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( ( -.  ( F `  x
)  e.  _V  \/  -.  ( F `  x
)  =/=  .0.  )  <->  ( F `  x )  =  .0.  ) )
7164, 70syl5bb 272 . . . . . . . . 9  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( -.  ( F `  x )  e.  ( _V  \  {  .0.  } )  <->  ( F `  x )  =  .0.  ) )
7262, 71imbi12d 334 . . . . . . . 8  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( ( -.  ( H `  x
)  <_  G  ->  -.  ( F `  x
)  e.  ( _V 
\  {  .0.  }
) )  <->  ( G  <  ( H `  x
)  ->  ( F `  x )  =  .0.  ) ) )
7356, 72syl5bb 272 . . . . . . 7  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( (
( F `  x
)  e.  ( _V 
\  {  .0.  }
)  ->  ( H `  x )  <_  G
)  <->  ( G  < 
( H `  x
)  ->  ( F `  x )  =  .0.  ) ) )
7473pm5.74da 723 . . . . . 6  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( x  e.  A  ->  ( ( F `  x )  e.  ( _V  \  {  .0.  } )  ->  ( H `  x )  <_  G ) )  <->  ( x  e.  A  ->  ( G  <  ( H `  x )  ->  ( F `  x )  =  .0.  ) ) ) )
7555, 74syl5bb 272 . . . . 5  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( ( x  e.  A  /\  ( F `  x )  e.  ( _V  \  {  .0.  } ) )  -> 
( H `  x
)  <_  G )  <->  ( x  e.  A  -> 
( G  <  ( H `  x )  ->  ( F `  x
)  =  .0.  )
) ) )
7654, 75bitrd 268 . . . 4  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( x  e.  ( F supp  .0.  )  ->  ( H `  x
)  <_  G )  <->  ( x  e.  A  -> 
( G  <  ( H `  x )  ->  ( F `  x
)  =  .0.  )
) ) )
7776ralbidv2 2984 . . 3  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( A. x  e.  ( F supp  .0.  )
( H `  x
)  <_  G  <->  A. x  e.  A  ( G  <  ( H `  x
)  ->  ( F `  x )  =  .0.  ) ) )
7835, 77bitrd 268 . 2  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( A. y  e.  ( H " ( F supp  .0.  ) ) y  <_  G  <->  A. x  e.  A  ( G  <  ( H `  x
)  ->  ( F `  x )  =  .0.  ) ) )
799, 23, 783bitrd 294 1  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( D `  F )  <_  G  <->  A. x  e.  A  ( G  <  ( H `
 x )  -> 
( F `  x
)  =  .0.  )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295    ^m cmap 7857   Fincfn 7955   supcsup 8346   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101   mPoly cmpl 19353  ℂfldccnfld 19746   mDeg cmdg 23813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-psr 19356  df-mpl 19358  df-cnfld 19747  df-mdeg 23815
This theorem is referenced by:  mdeglt  23825  mdegaddle  23834  mdegvscale  23835  mdegle0  23837  mdegmullem  23838  deg1leb  23855
  Copyright terms: Public domain W3C validator