MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem2 Structured version   Visualization version   Unicode version

Theorem ostthlem2 25317
Description: Lemma for ostth 25328. Refine ostthlem1 25316 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
ostthlem1.1  |-  ( ph  ->  F  e.  A )
ostthlem1.2  |-  ( ph  ->  G  e.  A )
ostthlem2.3  |-  ( (
ph  /\  p  e.  Prime )  ->  ( F `  p )  =  ( G `  p ) )
Assertion
Ref Expression
ostthlem2  |-  ( ph  ->  F  =  G )
Distinct variable groups:    G, p    ph, p    A, p    F, p
Allowed substitution hint:    Q( p)

Proof of Theorem ostthlem2
Dummy variables  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . 2  |-  Q  =  (flds  QQ )
2 qabsabv.a . 2  |-  A  =  (AbsVal `  Q )
3 ostthlem1.1 . 2  |-  ( ph  ->  F  e.  A )
4 ostthlem1.2 . 2  |-  ( ph  ->  G  e.  A )
5 eluz2nn 11726 . . 3  |-  ( n  e.  ( ZZ>= `  2
)  ->  n  e.  NN )
6 fveq2 6191 . . . . . . 7  |-  ( p  =  1  ->  ( F `  p )  =  ( F ` 
1 ) )
7 fveq2 6191 . . . . . . 7  |-  ( p  =  1  ->  ( G `  p )  =  ( G ` 
1 ) )
86, 7eqeq12d 2637 . . . . . 6  |-  ( p  =  1  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  1 )  =  ( G `  1
) ) )
98imbi2d 330 . . . . 5  |-  ( p  =  1  ->  (
( ph  ->  ( F `
 p )  =  ( G `  p
) )  <->  ( ph  ->  ( F `  1
)  =  ( G `
 1 ) ) ) )
10 fveq2 6191 . . . . . . 7  |-  ( p  =  y  ->  ( F `  p )  =  ( F `  y ) )
11 fveq2 6191 . . . . . . 7  |-  ( p  =  y  ->  ( G `  p )  =  ( G `  y ) )
1210, 11eqeq12d 2637 . . . . . 6  |-  ( p  =  y  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  y )  =  ( G `  y ) ) )
1312imbi2d 330 . . . . 5  |-  ( p  =  y  ->  (
( ph  ->  ( F `
 p )  =  ( G `  p
) )  <->  ( ph  ->  ( F `  y
)  =  ( G `
 y ) ) ) )
14 fveq2 6191 . . . . . . 7  |-  ( p  =  z  ->  ( F `  p )  =  ( F `  z ) )
15 fveq2 6191 . . . . . . 7  |-  ( p  =  z  ->  ( G `  p )  =  ( G `  z ) )
1614, 15eqeq12d 2637 . . . . . 6  |-  ( p  =  z  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  z )  =  ( G `  z ) ) )
1716imbi2d 330 . . . . 5  |-  ( p  =  z  ->  (
( ph  ->  ( F `
 p )  =  ( G `  p
) )  <->  ( ph  ->  ( F `  z
)  =  ( G `
 z ) ) ) )
18 fveq2 6191 . . . . . . 7  |-  ( p  =  ( y  x.  z )  ->  ( F `  p )  =  ( F `  ( y  x.  z
) ) )
19 fveq2 6191 . . . . . . 7  |-  ( p  =  ( y  x.  z )  ->  ( G `  p )  =  ( G `  ( y  x.  z
) ) )
2018, 19eqeq12d 2637 . . . . . 6  |-  ( p  =  ( y  x.  z )  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  ( y  x.  z
) )  =  ( G `  ( y  x.  z ) ) ) )
2120imbi2d 330 . . . . 5  |-  ( p  =  ( y  x.  z )  ->  (
( ph  ->  ( F `
 p )  =  ( G `  p
) )  <->  ( ph  ->  ( F `  (
y  x.  z ) )  =  ( G `
 ( y  x.  z ) ) ) ) )
22 fveq2 6191 . . . . . . 7  |-  ( p  =  n  ->  ( F `  p )  =  ( F `  n ) )
23 fveq2 6191 . . . . . . 7  |-  ( p  =  n  ->  ( G `  p )  =  ( G `  n ) )
2422, 23eqeq12d 2637 . . . . . 6  |-  ( p  =  n  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  n )  =  ( G `  n ) ) )
2524imbi2d 330 . . . . 5  |-  ( p  =  n  ->  (
( ph  ->  ( F `
 p )  =  ( G `  p
) )  <->  ( ph  ->  ( F `  n
)  =  ( G `
 n ) ) ) )
26 ax-1ne0 10005 . . . . . . 7  |-  1  =/=  0
271qrng1 25311 . . . . . . . 8  |-  1  =  ( 1r `  Q )
281qrng0 25310 . . . . . . . 8  |-  0  =  ( 0g `  Q )
292, 27, 28abv1z 18832 . . . . . . 7  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
303, 26, 29sylancl 694 . . . . . 6  |-  ( ph  ->  ( F `  1
)  =  1 )
312, 27, 28abv1z 18832 . . . . . . 7  |-  ( ( G  e.  A  /\  1  =/=  0 )  -> 
( G `  1
)  =  1 )
324, 26, 31sylancl 694 . . . . . 6  |-  ( ph  ->  ( G `  1
)  =  1 )
3330, 32eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( F `  1
)  =  ( G `
 1 ) )
34 ostthlem2.3 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  ( F `  p )  =  ( G `  p ) )
3534expcom 451 . . . . 5  |-  ( p  e.  Prime  ->  ( ph  ->  ( F `  p
)  =  ( G `
 p ) ) )
36 jcab 907 . . . . . 6  |-  ( (
ph  ->  ( ( F `
 y )  =  ( G `  y
)  /\  ( F `  z )  =  ( G `  z ) ) )  <->  ( ( ph  ->  ( F `  y )  =  ( G `  y ) )  /\  ( ph  ->  ( F `  z
)  =  ( G `
 z ) ) ) )
37 oveq12 6659 . . . . . . . . 9  |-  ( ( ( F `  y
)  =  ( G `
 y )  /\  ( F `  z )  =  ( G `  z ) )  -> 
( ( F `  y )  x.  ( F `  z )
)  =  ( ( G `  y )  x.  ( G `  z ) ) )
383adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  F  e.  A )
39 eluzelz 11697 . . . . . . . . . . . . 13  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
4039ad2antrl 764 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  y  e.  ZZ )
41 zq 11794 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  QQ )
4240, 41syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  y  e.  QQ )
43 eluzelz 11697 . . . . . . . . . . . . 13  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
4443ad2antll 765 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  z  e.  ZZ )
45 zq 11794 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  QQ )
4644, 45syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  z  e.  QQ )
471qrngbas 25308 . . . . . . . . . . . 12  |-  QQ  =  ( Base `  Q )
48 qex 11800 . . . . . . . . . . . . 13  |-  QQ  e.  _V
49 cnfldmul 19752 . . . . . . . . . . . . . 14  |-  x.  =  ( .r ` fld )
501, 49ressmulr 16006 . . . . . . . . . . . . 13  |-  ( QQ  e.  _V  ->  x.  =  ( .r `  Q ) )
5148, 50ax-mp 5 . . . . . . . . . . . 12  |-  x.  =  ( .r `  Q )
522, 47, 51abvmul 18829 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  y  e.  QQ  /\  z  e.  QQ )  ->  ( F `  ( y  x.  z ) )  =  ( ( F `  y )  x.  ( F `  z )
) )
5338, 42, 46, 52syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  ( F `  ( y  x.  z
) )  =  ( ( F `  y
)  x.  ( F `
 z ) ) )
544adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  G  e.  A )
552, 47, 51abvmul 18829 . . . . . . . . . . 11  |-  ( ( G  e.  A  /\  y  e.  QQ  /\  z  e.  QQ )  ->  ( G `  ( y  x.  z ) )  =  ( ( G `  y )  x.  ( G `  z )
) )
5654, 42, 46, 55syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  ( G `  ( y  x.  z
) )  =  ( ( G `  y
)  x.  ( G `
 z ) ) )
5753, 56eqeq12d 2637 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  ( ( F `  ( y  x.  z ) )  =  ( G `  (
y  x.  z ) )  <->  ( ( F `
 y )  x.  ( F `  z
) )  =  ( ( G `  y
)  x.  ( G `
 z ) ) ) )
5837, 57syl5ibr 236 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  ( (
( F `  y
)  =  ( G `
 y )  /\  ( F `  z )  =  ( G `  z ) )  -> 
( F `  (
y  x.  z ) )  =  ( G `
 ( y  x.  z ) ) ) )
5958expcom 451 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ph  ->  ( ( ( F `
 y )  =  ( G `  y
)  /\  ( F `  z )  =  ( G `  z ) )  ->  ( F `  ( y  x.  z
) )  =  ( G `  ( y  x.  z ) ) ) ) )
6059a2d 29 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( ph  ->  ( ( F `
 y )  =  ( G `  y
)  /\  ( F `  z )  =  ( G `  z ) ) )  ->  ( ph  ->  ( F `  ( y  x.  z
) )  =  ( G `  ( y  x.  z ) ) ) ) )
6136, 60syl5bir 233 . . . . 5  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( ph  ->  ( F `
 y )  =  ( G `  y
) )  /\  ( ph  ->  ( F `  z )  =  ( G `  z ) ) )  ->  ( ph  ->  ( F `  ( y  x.  z
) )  =  ( G `  ( y  x.  z ) ) ) ) )
629, 13, 17, 21, 25, 33, 35, 61prmind 15399 . . . 4  |-  ( n  e.  NN  ->  ( ph  ->  ( F `  n )  =  ( G `  n ) ) )
6362impcom 446 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  =  ( G `  n
) )
645, 63sylan2 491 . 2  |-  ( (
ph  /\  n  e.  ( ZZ>= `  2 )
)  ->  ( F `  n )  =  ( G `  n ) )
651, 2, 3, 4, 64ostthlem1 25316 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   QQcq 11788   Primecprime 15385   ↾s cress 15858   .rcmulr 15942  AbsValcabv 18816  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-abv 18817  df-cnfld 19747
This theorem is referenced by:  ostth1  25322  ostth3  25327
  Copyright terms: Public domain W3C validator