Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem11 Structured version   Visualization version   Unicode version

Theorem poimirlem11 33420
Description: Lemma for poimir 33442 connecting walks that could yield from a given cube a given face opposite the first vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem22.1  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
poimirlem12.2  |-  ( ph  ->  T  e.  S )
poimirlem11.3  |-  ( ph  ->  ( 2nd `  T
)  =  0 )
poimirlem11.4  |-  ( ph  ->  U  e.  S )
poimirlem11.5  |-  ( ph  ->  ( 2nd `  U
)  =  0 )
poimirlem11.6  |-  ( ph  ->  M  e.  ( 1 ... N ) )
Assertion
Ref Expression
poimirlem11  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  C_  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) )
Distinct variable groups:    f, j,
t, y    ph, j, y   
j, F, y    j, M, y    j, N, y    T, j, y    U, j, y    ph, t    f, K, j, t    f, M, t    f, N, t    T, f    U, f    f, F, t    t, T    t, U    S, j, t, y
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem11
StepHypRef Expression
1 eldif 3584 . . . . . . 7  |-  ( y  e.  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  \  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) )  <-> 
( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )
2 imassrn 5477 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  C_  ran  ( 2nd `  ( 1st `  T ) )
3 poimirlem12.2 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  T  e.  S )
4 elrabi 3359 . . . . . . . . . . . . . . . . . . 19  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
5 poimirlem22.s . . . . . . . . . . . . . . . . . . 19  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
64, 5eleq2s 2719 . . . . . . . . . . . . . . . . . 18  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
73, 6syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
8 xp1st 7198 . . . . . . . . . . . . . . . . 17  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
97, 8syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
10 xp2nd 7199 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
119, 10syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
12 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
13 f1oeq1 6127 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
1412, 13elab 3350 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
1511, 14sylib 208 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
16 f1of 6137 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) --> ( 1 ... N
) )
1715, 16syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 1 ... N ) )
18 frn 6053 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) --> ( 1 ... N )  ->  ran  ( 2nd `  ( 1st `  T ) )  C_  ( 1 ... N
) )
1917, 18syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ran  ( 2nd `  ( 1st `  T ) ) 
C_  ( 1 ... N ) )
202, 19syl5ss 3614 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  C_  ( 1 ... N
) )
21 poimirlem11.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  U  e.  S )
22 elrabi 3359 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  U  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
2322, 5eleq2s 2719 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  S  ->  U  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
2421, 23syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  U  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
25 xp1st 7198 . . . . . . . . . . . . . . . 16  |-  ( U  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  U )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
2624, 25syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st `  U
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
27 xp2nd 7199 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  U )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  U ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
2826, 27syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2nd `  ( 1st `  U ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
29 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( 2nd `  ( 1st `  U
) )  e.  _V
30 f1oeq1 6127 . . . . . . . . . . . . . . 15  |-  ( f  =  ( 2nd `  ( 1st `  U ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
3129, 30elab 3350 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( 1st `  U ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  U
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
3228, 31sylib 208 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2nd `  ( 1st `  U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
33 f1ofo 6144 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  U
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
3432, 33syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2nd `  ( 1st `  U ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
35 foima 6120 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
3634, 35syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
3720, 36sseqtr4d 3642 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  C_  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) ) )
3837ssdifd 3746 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) ) 
\  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) )  C_  ( (
( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) )  \ 
( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )
39 dff1o3 6143 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  U
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  U ) ) ) )
4039simprbi 480 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  U ) ) )
4132, 40syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Fun  `' ( 2nd `  ( 1st `  U
) ) )
42 imadif 5973 . . . . . . . . . . 11  |-  ( Fun  `' ( 2nd `  ( 1st `  U ) )  ->  ( ( 2nd `  ( 1st `  U
) ) " (
( 1 ... N
)  \  ( 1 ... M ) ) )  =  ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) )  \ 
( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )
4341, 42syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... N )  \ 
( 1 ... M
) ) )  =  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) ) )
44 difun2 4048 . . . . . . . . . . . 12  |-  ( ( ( ( M  + 
1 ) ... N
)  u.  ( 1 ... M ) ) 
\  ( 1 ... M ) )  =  ( ( ( M  +  1 ) ... N )  \  (
1 ... M ) )
45 poimirlem11.6 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  ( 1 ... N ) )
46 fzsplit 12367 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( 1 ... N )  ->  (
1 ... N )  =  ( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )
4745, 46syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... M )  u.  ( ( M  +  1 ) ... N ) ) )
48 uncom 3757 . . . . . . . . . . . . . 14  |-  ( ( 1 ... M )  u.  ( ( M  +  1 ) ... N ) )  =  ( ( ( M  +  1 ) ... N )  u.  (
1 ... M ) )
4947, 48syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1 ... N
)  =  ( ( ( M  +  1 ) ... N )  u.  ( 1 ... M ) ) )
5049difeq1d 3727 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1 ... N )  \  (
1 ... M ) )  =  ( ( ( ( M  +  1 ) ... N )  u.  ( 1 ... M ) )  \ 
( 1 ... M
) ) )
51 incom 3805 . . . . . . . . . . . . . 14  |-  ( ( ( M  +  1 ) ... N )  i^i  ( 1 ... M ) )  =  ( ( 1 ... M )  i^i  (
( M  +  1 ) ... N ) )
52 elfznn 12370 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ( 1 ... N )  ->  M  e.  NN )
5345, 52syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN )
5453nnred 11035 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  RR )
5554ltp1d 10954 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  <  ( M  +  1 ) )
56 fzdisj 12368 . . . . . . . . . . . . . . 15  |-  ( M  <  ( M  + 
1 )  ->  (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
5755, 56syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1 ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
5851, 57syl5eq 2668 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M  +  1 ) ... N )  i^i  (
1 ... M ) )  =  (/) )
59 disj3 4021 . . . . . . . . . . . . 13  |-  ( ( ( ( M  + 
1 ) ... N
)  i^i  ( 1 ... M ) )  =  (/)  <->  ( ( M  +  1 ) ... N )  =  ( ( ( M  + 
1 ) ... N
)  \  ( 1 ... M ) ) )
6058, 59sylib 208 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  =  ( ( ( M  +  1 ) ... N ) 
\  ( 1 ... M ) ) )
6144, 50, 603eqtr4a 2682 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1 ... N )  \  (
1 ... M ) )  =  ( ( M  +  1 ) ... N ) )
6261imaeq2d 5466 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... N )  \ 
( 1 ... M
) ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
6343, 62eqtr3d 2658 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) )  =  ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) ) )
6438, 63sseqtrd 3641 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) ) 
\  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) )  C_  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) )
6564sselda 3603 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) ) 
\  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) ) )  ->  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
661, 65sylan2br 493 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
67 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  U  ->  ( 2nd `  t )  =  ( 2nd `  U
) )
6867breq2d 4665 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  U  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  U ) ) )
6968ifbid 4108 . . . . . . . . . . . . . . . . 17  |-  ( t  =  U  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  U
) ,  y ,  ( y  +  1 ) ) )
7069csbeq1d 3540 . . . . . . . . . . . . . . . 16  |-  ( t  =  U  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
71 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  U  ->  ( 1st `  t )  =  ( 1st `  U
) )
7271fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  U  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  U ) ) )
7371fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  U  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  U ) ) )
7473imaeq1d 5465 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  U  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... j ) ) )
7574xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  U  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... j
) )  X.  {
1 } ) )
7673imaeq1d 5465 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  U  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) ) )
7776xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  U  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
7875, 77uneq12d 3768 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  U  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
7972, 78oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( t  =  U  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
8079csbeq2dv 3992 . . . . . . . . . . . . . . . 16  |-  ( t  =  U  ->  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
8170, 80eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( t  =  U  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
8281mpteq2dv 4745 . . . . . . . . . . . . . 14  |-  ( t  =  U  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  U
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
8382eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( t  =  U  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  U
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
8483, 5elrab2 3366 . . . . . . . . . . . 12  |-  ( U  e.  S  <->  ( U  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  U
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
8584simprbi 480 . . . . . . . . . . 11  |-  ( U  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  U
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
8621, 85syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
87 poimirlem11.5 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2nd `  U
)  =  0 )
88 breq12 4658 . . . . . . . . . . . . . . . 16  |-  ( ( y  =  ( M  -  1 )  /\  ( 2nd `  U )  =  0 )  -> 
( y  <  ( 2nd `  U )  <->  ( M  -  1 )  <  0 ) )
8987, 88sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( y  =  ( M  -  1 )  /\  ph )  ->  ( y  <  ( 2nd `  U
)  <->  ( M  - 
1 )  <  0
) )
9089ancoms 469 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  (
y  <  ( 2nd `  U )  <->  ( M  -  1 )  <  0 ) )
91 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( y  =  ( M  - 
1 )  ->  (
y  +  1 )  =  ( ( M  -  1 )  +  1 ) )
9253nncnd 11036 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  CC )
93 npcan1 10455 . . . . . . . . . . . . . . . 16  |-  ( M  e.  CC  ->  (
( M  -  1 )  +  1 )  =  M )
9492, 93syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
9591, 94sylan9eqr 2678 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  (
y  +  1 )  =  M )
9690, 95ifbieq2d 4111 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  =  if ( ( M  -  1 )  <  0 ,  y ,  M ) )
9753nnzd 11481 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  ZZ )
98 poimir.0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  NN )
9998nnzd 11481 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ZZ )
100 elfzm1b 12418 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ( 1 ... N )  <-> 
( M  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
10197, 99, 100syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( M  e.  ( 1 ... N )  <-> 
( M  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
10245, 101mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) )
103 elfzle1 12344 . . . . . . . . . . . . . . . . 17  |-  ( ( M  -  1 )  e.  ( 0 ... ( N  -  1 ) )  ->  0  <_  ( M  -  1 ) )
104102, 103syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <_  ( M  -  1 ) )
105 0red 10041 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  0  e.  RR )
106 nnm1nn0 11334 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
10753, 106syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
108107nn0red 11352 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  -  1 )  e.  RR )
109105, 108lenltd 10183 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 0  <_  ( M  -  1 )  <->  -.  ( M  -  1 )  <  0 ) )
110104, 109mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  ( M  - 
1 )  <  0
)
111110iffalsed 4097 . . . . . . . . . . . . . 14  |-  ( ph  ->  if ( ( M  -  1 )  <  0 ,  y ,  M )  =  M )
112111adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  if ( ( M  - 
1 )  <  0 ,  y ,  M
)  =  M )
11396, 112eqtrd 2656 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  =  M )
114113csbeq1d 3540 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ M  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
115 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  M  ->  (
1 ... j )  =  ( 1 ... M
) )
116115imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) )
117116xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  U ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  X.  {
1 } ) )
118 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  M  ->  (
j  +  1 )  =  ( M  + 
1 ) )
119118oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  M  ->  (
( j  +  1 ) ... N )  =  ( ( M  +  1 ) ... N ) )
120119imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
121120xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )
122117, 121uneq12d 3768 . . . . . . . . . . . . . . 15  |-  ( j  =  M  ->  (
( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) )
123122oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( j  =  M  ->  (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
124123adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  =  M )  ->  (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
12545, 124csbied 3560 . . . . . . . . . . . 12  |-  ( ph  ->  [_ M  /  j ]_ ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
126125adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ M  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
127114, 126eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
128 ovexd 6680 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  e.  _V )
12986, 127, 102, 128fvmptd 6288 . . . . . . . . 9  |-  ( ph  ->  ( F `  ( M  -  1 ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) )
130129fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  ( ( F `  ( M  -  1
) ) `  y
)  =  ( ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
) )
131130adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( F `
 ( M  - 
1 ) ) `  y )  =  ( ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
) )
132 imassrn 5477 . . . . . . . . . 10  |-  ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  C_  ran  ( 2nd `  ( 1st `  U ) )
133 f1of 6137 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  U
) ) : ( 1 ... N ) --> ( 1 ... N
) )
13432, 133syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 2nd `  ( 1st `  U ) ) : ( 1 ... N ) --> ( 1 ... N ) )
135 frn 6053 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
) --> ( 1 ... N )  ->  ran  ( 2nd `  ( 1st `  U ) )  C_  ( 1 ... N
) )
136134, 135syl 17 . . . . . . . . . 10  |-  ( ph  ->  ran  ( 2nd `  ( 1st `  U ) ) 
C_  ( 1 ... N ) )
137132, 136syl5ss 3614 . . . . . . . . 9  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  C_  ( 1 ... N
) )
138137sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  y  e.  ( 1 ... N ) )
139 xp1st 7198 . . . . . . . . . . . 12  |-  ( ( 1st `  U )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  U ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
14026, 139syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  ( 1st `  U ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
141 elmapfn 7880 . . . . . . . . . . 11  |-  ( ( 1st `  ( 1st `  U ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  U ) )  Fn  ( 1 ... N ) )
142140, 141syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  ( 1st `  U ) )  Fn  ( 1 ... N ) )
143142adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( 1st `  ( 1st `  U ) )  Fn  ( 1 ... N ) )
144 1ex 10035 . . . . . . . . . . . . . 14  |-  1  e.  _V
145 fnconstg 6093 . . . . . . . . . . . . . 14  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) )
146144, 145ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )
147 c0ex 10034 . . . . . . . . . . . . . 14  |-  0  e.  _V
148 fnconstg 6093 . . . . . . . . . . . . . 14  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) )
149147, 148ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )
150146, 149pm3.2i 471 . . . . . . . . . . . 12  |-  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
151 imain 5974 . . . . . . . . . . . . . 14  |-  ( Fun  `' ( 2nd `  ( 1st `  U ) )  ->  ( ( 2nd `  ( 1st `  U
) ) " (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) ) )
15241, 151syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) ) )
15357imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  U ) )
" (/) ) )
154 ima0 5481 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( 1st `  U ) ) " (/) )  =  (/)
155153, 154syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  (/) )
156152, 155eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) )  =  (/) )
157 fnun 5997 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  i^i  (
( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) ) )
158150, 156, 157sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) ) )
159 imaundi 5545 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  U ) ) "
( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
16047imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) ) ) )
161160, 36eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) ) )  =  ( 1 ... N
) )
162159, 161syl5eqr 2670 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
163162fneq2d 5982 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  u.  (
( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  <-> 
( ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) ) )
164158, 163mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) )
165164adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) )
166 ovexd 6680 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( 1 ... N )  e.  _V )
167 inidm 3822 . . . . . . . . 9  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
168 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  U
) ) `  y
)  =  ( ( 1st `  ( 1st `  U ) ) `  y ) )
169 fvun2 6270 . . . . . . . . . . . . 13  |-  ( ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  /\  (
( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/)  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  y )  =  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) `
 y ) )
170146, 149, 169mp3an12 1414 . . . . . . . . . . . 12  |-  ( ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) )  =  (/)  /\  y  e.  ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) ) )  -> 
( ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  ( ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) `  y ) )
171156, 170sylan 488 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  ( ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) `  y ) )
172147fvconst2 6469 . . . . . . . . . . . 12  |-  ( y  e.  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  ->  ( (
( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) `
 y )  =  0 )
173172adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) `
 y )  =  0 )
174171, 173eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  0 )
175174adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  y )  =  0 )
176143, 165, 166, 166, 167, 168, 175ofval 6906 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
)  =  ( ( ( 1st `  ( 1st `  U ) ) `
 y )  +  0 ) )
177138, 176mpdan 702 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  y )  =  ( ( ( 1st `  ( 1st `  U ) ) `  y )  +  0 ) )
178 elmapi 7879 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( 1st `  U ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  U ) ) : ( 1 ... N ) --> ( 0..^ K ) )
179140, 178syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  ( 1st `  U ) ) : ( 1 ... N ) --> ( 0..^ K ) )
180179ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  U ) ) `
 y )  e.  ( 0..^ K ) )
181 elfzonn0 12512 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( 1st `  U ) ) `
 y )  e.  ( 0..^ K )  ->  ( ( 1st `  ( 1st `  U
) ) `  y
)  e.  NN0 )
182180, 181syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  U ) ) `
 y )  e. 
NN0 )
183182nn0cnd 11353 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  U ) ) `
 y )  e.  CC )
184138, 183syldan 487 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( 1st `  ( 1st `  U
) ) `  y
)  e.  CC )
185184addid1d 10236 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( 1st `  ( 1st `  U ) ) `  y )  +  0 )  =  ( ( 1st `  ( 1st `  U ) ) `  y ) )
186131, 177, 1853eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( F `
 ( M  - 
1 ) ) `  y )  =  ( ( 1st `  ( 1st `  U ) ) `
 y ) )
18766, 186syldan 487 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  ( ( F `  ( M  -  1 ) ) `
 y )  =  ( ( 1st `  ( 1st `  U ) ) `
 y ) )
188 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
189188breq2d 4665 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
190189ifbid 4108 . . . . . . . . . . . . . . . . 17  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
191190csbeq1d 3540 . . . . . . . . . . . . . . . 16  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
192 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
193192fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
194192fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
195194imaeq1d 5465 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
196195xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
197194imaeq1d 5465 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
198197xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
199196, 198uneq12d 3768 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
200193, 199oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
201200csbeq2dv 3992 . . . . . . . . . . . . . . . 16  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
202191, 201eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
203202mpteq2dv 4745 . . . . . . . . . . . . . 14  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
204203eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
205204, 5elrab2 3366 . . . . . . . . . . . 12  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
206205simprbi 480 . . . . . . . . . . 11  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
2073, 206syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
208 poimirlem11.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2nd `  T
)  =  0 )
209 breq12 4658 . . . . . . . . . . . . . . . 16  |-  ( ( y  =  ( M  -  1 )  /\  ( 2nd `  T )  =  0 )  -> 
( y  <  ( 2nd `  T )  <->  ( M  -  1 )  <  0 ) )
210208, 209sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( y  =  ( M  -  1 )  /\  ph )  ->  ( y  <  ( 2nd `  T
)  <->  ( M  - 
1 )  <  0
) )
211210ancoms 469 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  (
y  <  ( 2nd `  T )  <->  ( M  -  1 )  <  0 ) )
212211, 95ifbieq2d 4111 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  if ( ( M  -  1 )  <  0 ,  y ,  M ) )
213212, 112eqtrd 2656 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  M )
214213csbeq1d 3540 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ M  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
215115imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )
216215xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) )
217119imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
218217xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )
219216, 218uneq12d 3768 . . . . . . . . . . . . . . 15  |-  ( j  =  M  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) )
220219oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( j  =  M  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
221220adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  =  M )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
22245, 221csbied 3560 . . . . . . . . . . . 12  |-  ( ph  ->  [_ M  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
223222adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ M  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
224214, 223eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
225 ovexd 6680 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  e.  _V )
226207, 224, 102, 225fvmptd 6288 . . . . . . . . 9  |-  ( ph  ->  ( F `  ( M  -  1 ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) )
227226fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  ( ( F `  ( M  -  1
) ) `  y
)  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
) )
228227adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( F `
 ( M  - 
1 ) ) `  y )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
) )
22920sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  y  e.  ( 1 ... N ) )
230 xp1st 7198 . . . . . . . . . . . 12  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
2319, 230syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
232 elmapfn 7880 . . . . . . . . . . 11  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
233231, 232syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
234233adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
235 fnconstg 6093 . . . . . . . . . . . . . 14  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) ) )
236144, 235ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )
237 fnconstg 6093 . . . . . . . . . . . . . 14  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )
238147, 237ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )
239236, 238pm3.2i 471 . . . . . . . . . . . 12  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
240 dff1o3 6143 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  T ) ) ) )
241240simprbi 480 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  T ) ) )
24215, 241syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  Fun  `' ( 2nd `  ( 1st `  T
) ) )
243 imain 5974 . . . . . . . . . . . . . 14  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
244242, 243syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
24557imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
246 ima0 5481 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( 1st `  T ) ) " (/) )  =  (/)
247245, 246syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  (/) )
248244, 247eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  (/) )
249 fnun 5997 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
250239, 248, 249sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
251 imaundi 5545 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
25247imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) ) ) )
253 f1ofo 6144 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
25415, 253syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
255 foima 6120 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
256254, 255syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
257252, 256eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) ) )  =  ( 1 ... N
) )
258251, 257syl5eqr 2670 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
259258fneq2d 5982 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  <-> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) ) )
260250, 259mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) )
261260adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) )
262 ovexd 6680 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( 1 ... N )  e.  _V )
263 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  T
) ) `  y
)  =  ( ( 1st `  ( 1st `  T ) ) `  y ) )
264 fvun1 6269 . . . . . . . . . . . . 13  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  /\  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/)  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  y )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } ) `
 y ) )
265236, 238, 264mp3an12 1414 . . . . . . . . . . . 12  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  (/)  /\  y  e.  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) ) )  -> 
( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) `  y ) )
266248, 265sylan 488 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) `  y ) )
267144fvconst2 6469 . . . . . . . . . . . 12  |-  ( y  e.  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  ->  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } ) `
 y )  =  1 )
268267adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } ) `
 y )  =  1 )
269266, 268eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  1 )
270269adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  y )  =  1 )
271234, 261, 262, 262, 167, 263, 270ofval 6906 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
)  =  ( ( ( 1st `  ( 1st `  T ) ) `
 y )  +  1 ) )
272229, 271mpdan 702 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  y )  =  ( ( ( 1st `  ( 1st `  T ) ) `  y )  +  1 ) )
273228, 272eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( F `
 ( M  - 
1 ) ) `  y )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 y )  +  1 ) )
274273adantrr 753 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  ( ( F `  ( M  -  1 ) ) `
 y )  =  ( ( ( 1st `  ( 1st `  T
) ) `  y
)  +  1 ) )
275 poimirlem22.1 . . . . . . . . 9  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
27698, 5, 275, 21, 87poimirlem10 33419 . . . . . . . 8  |-  ( ph  ->  ( ( F `  ( N  -  1
) )  oF  -  ( ( 1 ... N )  X. 
{ 1 } ) )  =  ( 1st `  ( 1st `  U
) ) )
27798, 5, 275, 3, 208poimirlem10 33419 . . . . . . . 8  |-  ( ph  ->  ( ( F `  ( N  -  1
) )  oF  -  ( ( 1 ... N )  X. 
{ 1 } ) )  =  ( 1st `  ( 1st `  T
) ) )
278276, 277eqtr3d 2658 . . . . . . 7  |-  ( ph  ->  ( 1st `  ( 1st `  U ) )  =  ( 1st `  ( 1st `  T ) ) )
279278fveq1d 6193 . . . . . 6  |-  ( ph  ->  ( ( 1st `  ( 1st `  U ) ) `
 y )  =  ( ( 1st `  ( 1st `  T ) ) `
 y ) )
280279adantr 481 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  ( ( 1st `  ( 1st `  U
) ) `  y
)  =  ( ( 1st `  ( 1st `  T ) ) `  y ) )
281187, 274, 2803eqtr3d 2664 . . . 4  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  ( (
( 1st `  ( 1st `  T ) ) `
 y )  +  1 )  =  ( ( 1st `  ( 1st `  T ) ) `
 y ) )
282 elmapi 7879 . . . . . . . . . . . 12  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
283231, 282syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
284283ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 y )  e.  ( 0..^ K ) )
285 elfzonn0 12512 . . . . . . . . . 10  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 y )  e.  ( 0..^ K )  ->  ( ( 1st `  ( 1st `  T
) ) `  y
)  e.  NN0 )
286284, 285syl 17 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 y )  e. 
NN0 )
287286nn0red 11352 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 y )  e.  RR )
288287ltp1d 10954 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 y )  < 
( ( ( 1st `  ( 1st `  T
) ) `  y
)  +  1 ) )
289287, 288gtned 10172 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 y )  +  1 )  =/=  (
( 1st `  ( 1st `  T ) ) `
 y ) )
290229, 289syldan 487 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( 1st `  ( 1st `  T ) ) `  y )  +  1 )  =/=  ( ( 1st `  ( 1st `  T ) ) `  y ) )
291290neneqd 2799 . . . . 5  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  -.  ( (
( 1st `  ( 1st `  T ) ) `
 y )  +  1 )  =  ( ( 1st `  ( 1st `  T ) ) `
 y ) )
292291adantrr 753 . . . 4  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  -.  (
( ( 1st `  ( 1st `  T ) ) `
 y )  +  1 )  =  ( ( 1st `  ( 1st `  T ) ) `
 y ) )
293281, 292pm2.65da 600 . . 3  |-  ( ph  ->  -.  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )
294 iman 440 . . 3  |-  ( ( y  e.  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  ->  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) )  <->  -.  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )
295293, 294sylibr 224 . 2  |-  ( ph  ->  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  -> 
y  e.  ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) ) ) )
296295ssrdv 3609 1  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  C_  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem13  33422
  Copyright terms: Public domain W3C validator