Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem13 Structured version   Visualization version   Unicode version

Theorem poimirlem13 33422
Description: Lemma for poimir 33442- for at most one simplex associated with a shared face is the opposite vertex first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem22.1  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
Assertion
Ref Expression
poimirlem13  |-  ( ph  ->  E* z  e.  S  ( 2nd `  z )  =  0 )
Distinct variable groups:    f, j,
t, y, z    ph, j,
y    j, F, y    j, N, y    ph, t    f, K, j, t    f, N, t    ph, z    f, F, t, z    z, K   
z, N    S, j,
t, y, z
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem13
Dummy variables  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
21ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  N  e.  NN )
3 poimirlem22.s . . . . . . . 8  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
4 poimirlem22.1 . . . . . . . . 9  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
54ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  F : ( 0 ... ( N  -  1 ) ) --> ( ( 0 ... K )  ^m  ( 1 ... N ) ) )
6 simplrl 800 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  z  e.  S )
7 simprl 794 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  ( 2nd `  z )  =  0 )
82, 3, 5, 6, 7poimirlem10 33419 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  (
( F `  ( N  -  1 ) )  oF  -  ( ( 1 ... N )  X.  {
1 } ) )  =  ( 1st `  ( 1st `  z ) ) )
9 simplrr 801 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  k  e.  S )
10 simprr 796 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  ( 2nd `  k )  =  0 )
112, 3, 5, 9, 10poimirlem10 33419 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  (
( F `  ( N  -  1 ) )  oF  -  ( ( 1 ... N )  X.  {
1 } ) )  =  ( 1st `  ( 1st `  k ) ) )
128, 11eqtr3d 2658 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  ( 1st `  ( 1st `  z
) )  =  ( 1st `  ( 1st `  k ) ) )
13 elrabi 3359 . . . . . . . . . . . . . 14  |-  ( z  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  z  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
1413, 3eleq2s 2719 . . . . . . . . . . . . 13  |-  ( z  e.  S  ->  z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
15 xp1st 7198 . . . . . . . . . . . . 13  |-  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
1614, 15syl 17 . . . . . . . . . . . 12  |-  ( z  e.  S  ->  ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
17 xp2nd 7199 . . . . . . . . . . . 12  |-  ( ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  z ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
1816, 17syl 17 . . . . . . . . . . 11  |-  ( z  e.  S  ->  ( 2nd `  ( 1st `  z
) )  e.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )
19 fvex 6201 . . . . . . . . . . . 12  |-  ( 2nd `  ( 1st `  z
) )  e.  _V
20 f1oeq1 6127 . . . . . . . . . . . 12  |-  ( f  =  ( 2nd `  ( 1st `  z ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
2119, 20elab 3350 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  z ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  z
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
2218, 21sylib 208 . . . . . . . . . 10  |-  ( z  e.  S  ->  ( 2nd `  ( 1st `  z
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
23 f1ofn 6138 . . . . . . . . . 10  |-  ( ( 2nd `  ( 1st `  z ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  z
) )  Fn  (
1 ... N ) )
2422, 23syl 17 . . . . . . . . 9  |-  ( z  e.  S  ->  ( 2nd `  ( 1st `  z
) )  Fn  (
1 ... N ) )
2524adantr 481 . . . . . . . 8  |-  ( ( z  e.  S  /\  k  e.  S )  ->  ( 2nd `  ( 1st `  z ) )  Fn  ( 1 ... N ) )
2625ad2antlr 763 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  ( 2nd `  ( 1st `  z
) )  Fn  (
1 ... N ) )
27 elrabi 3359 . . . . . . . . . . . . . 14  |-  ( k  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  k  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
2827, 3eleq2s 2719 . . . . . . . . . . . . 13  |-  ( k  e.  S  ->  k  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
29 xp1st 7198 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  k )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
3028, 29syl 17 . . . . . . . . . . . 12  |-  ( k  e.  S  ->  ( 1st `  k )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
31 xp2nd 7199 . . . . . . . . . . . 12  |-  ( ( 1st `  k )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  k ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
3230, 31syl 17 . . . . . . . . . . 11  |-  ( k  e.  S  ->  ( 2nd `  ( 1st `  k
) )  e.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )
33 fvex 6201 . . . . . . . . . . . 12  |-  ( 2nd `  ( 1st `  k
) )  e.  _V
34 f1oeq1 6127 . . . . . . . . . . . 12  |-  ( f  =  ( 2nd `  ( 1st `  k ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
3533, 34elab 3350 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  k ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  k
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
3632, 35sylib 208 . . . . . . . . . 10  |-  ( k  e.  S  ->  ( 2nd `  ( 1st `  k
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
37 f1ofn 6138 . . . . . . . . . 10  |-  ( ( 2nd `  ( 1st `  k ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  k
) )  Fn  (
1 ... N ) )
3836, 37syl 17 . . . . . . . . 9  |-  ( k  e.  S  ->  ( 2nd `  ( 1st `  k
) )  Fn  (
1 ... N ) )
3938adantl 482 . . . . . . . 8  |-  ( ( z  e.  S  /\  k  e.  S )  ->  ( 2nd `  ( 1st `  k ) )  Fn  ( 1 ... N ) )
4039ad2antlr 763 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  ( 2nd `  ( 1st `  k
) )  Fn  (
1 ... N ) )
41 eleq1 2689 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
m  e.  ( 1 ... N )  <->  n  e.  ( 1 ... N
) ) )
4241anbi2d 740 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  <->  ( (
( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  /\  n  e.  ( 1 ... N
) ) ) )
43 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  (
1 ... m )  =  ( 1 ... n
) )
4443imaeq2d 5466 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... m ) )  =  ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... n ) ) )
4543imaeq2d 5466 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
( 2nd `  ( 1st `  k ) )
" ( 1 ... m ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... n ) ) )
4644, 45eqeq12d 2637 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... m ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... m ) )  <->  ( ( 2nd `  ( 1st `  z
) ) " (
1 ... n ) )  =  ( ( 2nd `  ( 1st `  k
) ) " (
1 ... n ) ) ) )
4742, 46imbi12d 334 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
( ( ( (
ph  /\  ( z  e.  S  /\  k  e.  S ) )  /\  ( ( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... m ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... m ) ) )  <-> 
( ( ( (
ph  /\  ( z  e.  S  /\  k  e.  S ) )  /\  ( ( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... n ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... n ) ) ) ) )
481ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  N  e.  NN )
494ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  F : ( 0 ... ( N  -  1 ) ) --> ( ( 0 ... K )  ^m  ( 1 ... N ) ) )
50 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( z  e.  S  /\  k  e.  S )  ->  z  e.  S )
5150ad3antlr 767 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  z  e.  S )
52 simplrl 800 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  ( 2nd `  z )  =  0 )
53 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( z  e.  S  /\  k  e.  S )  ->  k  e.  S )
5453ad3antlr 767 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  k  e.  S )
55 simplrr 801 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  ( 2nd `  k )  =  0 )
56 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  m  e.  ( 1 ... N
) )
5748, 3, 49, 51, 52, 54, 55, 56poimirlem11 33420 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... m ) )  C_  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... m ) ) )
5848, 3, 49, 54, 55, 51, 52, 56poimirlem11 33420 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  k ) )
" ( 1 ... m ) )  C_  ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... m ) ) )
5957, 58eqssd 3620 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... m ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... m ) ) )
6047, 59chvarv 2263 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... n ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... n ) ) )
61 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  ph )
62 elfznn 12370 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( 1 ... N )  ->  n  e.  NN )
63 nnm1nn0 11334 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
6462, 63syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... N )  ->  (
n  -  1 )  e.  NN0 )
6564adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( 1 ... N )  /\  -.  n  =  1
)  ->  ( n  -  1 )  e. 
NN0 )
6662nncnd 11036 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( 1 ... N )  ->  n  e.  CC )
67 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
68 subeq0 10307 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  =  0  <-> 
n  =  1 ) )
6966, 67, 68sylancl 694 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( 1 ... N )  ->  (
( n  -  1 )  =  0  <->  n  =  1 ) )
7069necon3abid 2830 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... N )  ->  (
( n  -  1 )  =/=  0  <->  -.  n  =  1 ) )
7170biimpar 502 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( 1 ... N )  /\  -.  n  =  1
)  ->  ( n  -  1 )  =/=  0 )
72 elnnne0 11306 . . . . . . . . . . . . . . . . 17  |-  ( ( n  -  1 )  e.  NN  <->  ( (
n  -  1 )  e.  NN0  /\  (
n  -  1 )  =/=  0 ) )
7365, 71, 72sylanbrc 698 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( 1 ... N )  /\  -.  n  =  1
)  ->  ( n  -  1 )  e.  NN )
7473adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  -.  n  =  1 ) )  ->  ( n  - 
1 )  e.  NN )
7564nn0red 11352 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... N )  ->  (
n  -  1 )  e.  RR )
7675adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
n  -  1 )  e.  RR )
7762nnred 11035 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... N )  ->  n  e.  RR )
7877adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  n  e.  RR )
791nnred 11035 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  RR )
8079adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  N  e.  RR )
8177lem1d 10957 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... N )  ->  (
n  -  1 )  <_  n )
8281adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
n  -  1 )  <_  n )
83 elfzle2 12345 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... N )  ->  n  <_  N )
8483adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  n  <_  N )
8576, 78, 80, 82, 84letrd 10194 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
n  -  1 )  <_  N )
8685adantrr 753 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  -.  n  =  1 ) )  ->  ( n  - 
1 )  <_  N
)
871nnzd 11481 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  ZZ )
88 fznn 12408 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  (
( n  -  1 )  e.  ( 1 ... N )  <->  ( (
n  -  1 )  e.  NN  /\  (
n  -  1 )  <_  N ) ) )
8987, 88syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( n  - 
1 )  e.  ( 1 ... N )  <-> 
( ( n  - 
1 )  e.  NN  /\  ( n  -  1 )  <_  N )
) )
9089adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  -.  n  =  1 ) )  ->  ( ( n  -  1 )  e.  ( 1 ... N
)  <->  ( ( n  -  1 )  e.  NN  /\  ( n  -  1 )  <_  N ) ) )
9174, 86, 90mpbir2and 957 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  -.  n  =  1 ) )  ->  ( n  - 
1 )  e.  ( 1 ... N ) )
9261, 91sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  ( n  e.  ( 1 ... N )  /\  -.  n  =  1 ) )  ->  ( n  -  1 )  e.  ( 1 ... N
) )
93 ovex 6678 . . . . . . . . . . . . . 14  |-  ( n  -  1 )  e. 
_V
94 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( n  - 
1 )  ->  (
m  e.  ( 1 ... N )  <->  ( n  -  1 )  e.  ( 1 ... N
) ) )
9594anbi2d 740 . . . . . . . . . . . . . . 15  |-  ( m  =  ( n  - 
1 )  ->  (
( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  <->  ( (
( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  /\  (
n  -  1 )  e.  ( 1 ... N ) ) ) )
96 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( m  =  ( n  - 
1 )  ->  (
1 ... m )  =  ( 1 ... (
n  -  1 ) ) )
9796imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( n  - 
1 )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... m ) )  =  ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) ) )
9896imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( n  - 
1 )  ->  (
( 2nd `  ( 1st `  k ) )
" ( 1 ... m ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) )
9997, 98eqeq12d 2637 . . . . . . . . . . . . . . 15  |-  ( m  =  ( n  - 
1 )  ->  (
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... m ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... m ) )  <->  ( ( 2nd `  ( 1st `  z
) ) " (
1 ... ( n  - 
1 ) ) )  =  ( ( 2nd `  ( 1st `  k
) ) " (
1 ... ( n  - 
1 ) ) ) ) )
10095, 99imbi12d 334 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  - 
1 )  ->  (
( ( ( (
ph  /\  ( z  e.  S  /\  k  e.  S ) )  /\  ( ( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  m  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... m ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... m ) ) )  <-> 
( ( ( (
ph  /\  ( z  e.  S  /\  k  e.  S ) )  /\  ( ( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  ( n  -  1 )  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) ) ) )
10193, 100, 59vtocl 3259 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  ( n  -  1 )  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) )
10292, 101syldan 487 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  ( n  e.  ( 1 ... N )  /\  -.  n  =  1 ) )  ->  ( ( 2nd `  ( 1st `  z
) ) " (
1 ... ( n  - 
1 ) ) )  =  ( ( 2nd `  ( 1st `  k
) ) " (
1 ... ( n  - 
1 ) ) ) )
103102expr 643 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  n  e.  ( 1 ... N
) )  ->  ( -.  n  =  1  ->  ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) ) )
104 ima0 5481 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  z ) ) " (/) )  =  (/)
105 ima0 5481 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  k ) ) " (/) )  =  (/)
106104, 105eqtr4i 2647 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  z ) ) " (/) )  =  ( ( 2nd `  ( 1st `  k ) ) " (/) )
107 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( n  =  1  ->  (
n  -  1 )  =  ( 1  -  1 ) )
108 1m1e0 11089 . . . . . . . . . . . . . . . 16  |-  ( 1  -  1 )  =  0
109107, 108syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( n  =  1  ->  (
n  -  1 )  =  0 )
110109oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  (
1 ... ( n  - 
1 ) )  =  ( 1 ... 0
) )
111 fz10 12362 . . . . . . . . . . . . . 14  |-  ( 1 ... 0 )  =  (/)
112110, 111syl6eq 2672 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  (
1 ... ( n  - 
1 ) )  =  (/) )
113112imaeq2d 5466 . . . . . . . . . . . 12  |-  ( n  =  1  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) )  =  ( ( 2nd `  ( 1st `  z ) )
" (/) ) )
114112imaeq2d 5466 . . . . . . . . . . . 12  |-  ( n  =  1  ->  (
( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) )  =  ( ( 2nd `  ( 1st `  k ) )
" (/) ) )
115106, 113, 1143eqtr4a 2682 . . . . . . . . . . 11  |-  ( n  =  1  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) )
116103, 115pm2.61d2 172 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) )
11760, 116difeq12d 3729 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... n ) )  \ 
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  k ) ) "
( 1 ... n
) )  \  (
( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) ) )
118 fnsnfv 6258 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  ( 1st `  z ) )  Fn  ( 1 ... N )  /\  n  e.  ( 1 ... N
) )  ->  { ( ( 2nd `  ( 1st `  z ) ) `
 n ) }  =  ( ( 2nd `  ( 1st `  z
) ) " {
n } ) )
11924, 118sylan 488 . . . . . . . . . . 11  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  { ( ( 2nd `  ( 1st `  z ) ) `  n ) }  =  ( ( 2nd `  ( 1st `  z ) )
" { n }
) )
12062adantl 482 . . . . . . . . . . . . 13  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  n  e.  NN )
121 uncom 3757 . . . . . . . . . . . . . . . 16  |-  ( ( 1 ... ( n  -  1 ) )  u.  { n }
)  =  ( { n }  u.  (
1 ... ( n  - 
1 ) ) )
122121difeq1i 3724 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... (
n  -  1 ) )  u.  { n } )  \  (
1 ... ( n  - 
1 ) ) )  =  ( ( { n }  u.  (
1 ... ( n  - 
1 ) ) ) 
\  ( 1 ... ( n  -  1 ) ) )
123 difun2 4048 . . . . . . . . . . . . . . 15  |-  ( ( { n }  u.  ( 1 ... (
n  -  1 ) ) )  \  (
1 ... ( n  - 
1 ) ) )  =  ( { n }  \  ( 1 ... ( n  -  1 ) ) )
124122, 123eqtri 2644 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... (
n  -  1 ) )  u.  { n } )  \  (
1 ... ( n  - 
1 ) ) )  =  ( { n }  \  ( 1 ... ( n  -  1 ) ) )
125 nncn 11028 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  n  e.  CC )
126 npcan1 10455 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  CC  ->  (
( n  -  1 )  +  1 )  =  n )
127125, 126syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
( n  -  1 )  +  1 )  =  n )
128 elnnuz 11724 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
129128biimpi 206 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  1 )
)
130127, 129eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
( n  -  1 )  +  1 )  e.  ( ZZ>= `  1
) )
13163nn0zd 11480 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  ZZ )
132 uzid 11702 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  -  1 )  e.  ZZ  ->  (
n  -  1 )  e.  ( ZZ>= `  (
n  -  1 ) ) )
133131, 132syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  ( ZZ>= `  (
n  -  1 ) ) )
134 peano2uz 11741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  -  1 )  e.  ( ZZ>= `  (
n  -  1 ) )  ->  ( (
n  -  1 )  +  1 )  e.  ( ZZ>= `  ( n  -  1 ) ) )
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
( n  -  1 )  +  1 )  e.  ( ZZ>= `  (
n  -  1 ) ) )
136127, 135eqeltrrd 2702 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  ( n  -  1 ) ) )
137 fzsplit2 12366 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  ( n  -  1 ) ) )  ->  ( 1 ... n )  =  ( ( 1 ... ( n  -  1 ) )  u.  (
( ( n  - 
1 )  +  1 ) ... n ) ) )
138130, 136, 137syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
1 ... n )  =  ( ( 1 ... ( n  -  1 ) )  u.  (
( ( n  - 
1 )  +  1 ) ... n ) ) )
139127oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
( ( n  - 
1 )  +  1 ) ... n )  =  ( n ... n ) )
140 nnz 11399 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  n  e.  ZZ )
141 fzsn 12383 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ZZ  ->  (
n ... n )  =  { n } )
142140, 141syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
n ... n )  =  { n } )
143139, 142eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
( ( n  - 
1 )  +  1 ) ... n )  =  { n }
)
144143uneq2d 3767 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
( 1 ... (
n  -  1 ) )  u.  ( ( ( n  -  1 )  +  1 ) ... n ) )  =  ( ( 1 ... ( n  - 
1 ) )  u. 
{ n } ) )
145138, 144eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
1 ... n )  =  ( ( 1 ... ( n  -  1 ) )  u.  {
n } ) )
146145difeq1d 3727 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( 1 ... n
)  \  ( 1 ... ( n  - 
1 ) ) )  =  ( ( ( 1 ... ( n  -  1 ) )  u.  { n }
)  \  ( 1 ... ( n  - 
1 ) ) ) )
147 nnre 11027 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR )
148 ltm1 10863 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  RR  ->  (
n  -  1 )  <  n )
149 peano2rem 10348 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
150 ltnle 10117 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  -  1 )  e.  RR  /\  n  e.  RR )  ->  ( ( n  - 
1 )  <  n  <->  -.  n  <_  ( n  -  1 ) ) )
151149, 150mpancom 703 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  RR  ->  (
( n  -  1 )  <  n  <->  -.  n  <_  ( n  -  1 ) ) )
152148, 151mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR  ->  -.  n  <_  ( n  - 
1 ) )
153 elfzle2 12345 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... ( n  -  1 ) )  ->  n  <_  ( n  -  1 ) )
154152, 153nsyl 135 . . . . . . . . . . . . . . . 16  |-  ( n  e.  RR  ->  -.  n  e.  ( 1 ... ( n  - 
1 ) ) )
155147, 154syl 17 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  -.  n  e.  ( 1 ... ( n  - 
1 ) ) )
156 incom 3805 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... ( n  -  1 ) )  i^i  { n }
)  =  ( { n }  i^i  (
1 ... ( n  - 
1 ) ) )
157156eqeq1i 2627 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... (
n  -  1 ) )  i^i  { n } )  =  (/)  <->  ( { n }  i^i  ( 1 ... (
n  -  1 ) ) )  =  (/) )
158 disjsn 4246 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... (
n  -  1 ) )  i^i  { n } )  =  (/)  <->  -.  n  e.  ( 1 ... ( n  - 
1 ) ) )
159 disj3 4021 . . . . . . . . . . . . . . . 16  |-  ( ( { n }  i^i  ( 1 ... (
n  -  1 ) ) )  =  (/)  <->  {
n }  =  ( { n }  \ 
( 1 ... (
n  -  1 ) ) ) )
160157, 158, 1593bitr3i 290 . . . . . . . . . . . . . . 15  |-  ( -.  n  e.  ( 1 ... ( n  - 
1 ) )  <->  { n }  =  ( {
n }  \  (
1 ... ( n  - 
1 ) ) ) )
161155, 160sylib 208 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  { n }  =  ( {
n }  \  (
1 ... ( n  - 
1 ) ) ) )
162124, 146, 1613eqtr4a 2682 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( 1 ... n
)  \  ( 1 ... ( n  - 
1 ) ) )  =  { n }
)
163120, 162syl 17 . . . . . . . . . . . 12  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  ( ( 1 ... n )  \ 
( 1 ... (
n  -  1 ) ) )  =  {
n } )
164163imaeq2d 5466 . . . . . . . . . . 11  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  ( ( 2nd `  ( 1st `  z
) ) " (
( 1 ... n
)  \  ( 1 ... ( n  - 
1 ) ) ) )  =  ( ( 2nd `  ( 1st `  z ) ) " { n } ) )
165 dff1o3 6143 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  z ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  z
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  z ) ) ) )
166165simprbi 480 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( 1st `  z ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  z ) ) )
16722, 166syl 17 . . . . . . . . . . . . 13  |-  ( z  e.  S  ->  Fun  `' ( 2nd `  ( 1st `  z ) ) )
168 imadif 5973 . . . . . . . . . . . . 13  |-  ( Fun  `' ( 2nd `  ( 1st `  z ) )  ->  ( ( 2nd `  ( 1st `  z
) ) " (
( 1 ... n
)  \  ( 1 ... ( n  - 
1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... n ) )  \ 
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) ) ) )
169167, 168syl 17 . . . . . . . . . . . 12  |-  ( z  e.  S  ->  (
( 2nd `  ( 1st `  z ) )
" ( ( 1 ... n )  \ 
( 1 ... (
n  -  1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... n ) ) 
\  ( ( 2nd `  ( 1st `  z
) ) " (
1 ... ( n  - 
1 ) ) ) ) )
170169adantr 481 . . . . . . . . . . 11  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  ( ( 2nd `  ( 1st `  z
) ) " (
( 1 ... n
)  \  ( 1 ... ( n  - 
1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... n ) )  \ 
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) ) ) )
171119, 164, 1703eqtr2d 2662 . . . . . . . . . 10  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  { ( ( 2nd `  ( 1st `  z ) ) `  n ) }  =  ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... n ) ) 
\  ( ( 2nd `  ( 1st `  z
) ) " (
1 ... ( n  - 
1 ) ) ) ) )
1726, 171sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  n  e.  ( 1 ... N
) )  ->  { ( ( 2nd `  ( 1st `  z ) ) `
 n ) }  =  ( ( ( 2nd `  ( 1st `  z ) ) "
( 1 ... n
) )  \  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) ) ) )
173 eleq1 2689 . . . . . . . . . . . . 13  |-  ( z  =  k  ->  (
z  e.  S  <->  k  e.  S ) )
174173anbi1d 741 . . . . . . . . . . . 12  |-  ( z  =  k  ->  (
( z  e.  S  /\  n  e.  (
1 ... N ) )  <-> 
( k  e.  S  /\  n  e.  (
1 ... N ) ) ) )
175 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( z  =  k  ->  ( 1st `  z )  =  ( 1st `  k
) )
176175fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( z  =  k  ->  ( 2nd `  ( 1st `  z
) )  =  ( 2nd `  ( 1st `  k ) ) )
177176fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( z  =  k  ->  (
( 2nd `  ( 1st `  z ) ) `
 n )  =  ( ( 2nd `  ( 1st `  k ) ) `
 n ) )
178177sneqd 4189 . . . . . . . . . . . . 13  |-  ( z  =  k  ->  { ( ( 2nd `  ( 1st `  z ) ) `
 n ) }  =  { ( ( 2nd `  ( 1st `  k ) ) `  n ) } )
179176imaeq1d 5465 . . . . . . . . . . . . . 14  |-  ( z  =  k  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... n ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... n ) ) )
180176imaeq1d 5465 . . . . . . . . . . . . . 14  |-  ( z  =  k  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) )  =  ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) )
181179, 180difeq12d 3729 . . . . . . . . . . . . 13  |-  ( z  =  k  ->  (
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... n ) )  \ 
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  k ) ) "
( 1 ... n
) )  \  (
( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) ) )
182178, 181eqeq12d 2637 . . . . . . . . . . . 12  |-  ( z  =  k  ->  ( { ( ( 2nd `  ( 1st `  z
) ) `  n
) }  =  ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... n ) )  \ 
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) ) )  <->  { ( ( 2nd `  ( 1st `  k
) ) `  n
) }  =  ( ( ( 2nd `  ( 1st `  k ) )
" ( 1 ... n ) )  \ 
( ( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) ) ) )
183174, 182imbi12d 334 . . . . . . . . . . 11  |-  ( z  =  k  ->  (
( ( z  e.  S  /\  n  e.  ( 1 ... N
) )  ->  { ( ( 2nd `  ( 1st `  z ) ) `
 n ) }  =  ( ( ( 2nd `  ( 1st `  z ) ) "
( 1 ... n
) )  \  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... ( n  -  1 ) ) ) ) )  <->  ( ( k  e.  S  /\  n  e.  ( 1 ... N
) )  ->  { ( ( 2nd `  ( 1st `  k ) ) `
 n ) }  =  ( ( ( 2nd `  ( 1st `  k ) ) "
( 1 ... n
) )  \  (
( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) ) ) ) )
184183, 171chvarv 2263 . . . . . . . . . 10  |-  ( ( k  e.  S  /\  n  e.  ( 1 ... N ) )  ->  { ( ( 2nd `  ( 1st `  k ) ) `  n ) }  =  ( ( ( 2nd `  ( 1st `  k
) ) " (
1 ... n ) ) 
\  ( ( 2nd `  ( 1st `  k
) ) " (
1 ... ( n  - 
1 ) ) ) ) )
1859, 184sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  n  e.  ( 1 ... N
) )  ->  { ( ( 2nd `  ( 1st `  k ) ) `
 n ) }  =  ( ( ( 2nd `  ( 1st `  k ) ) "
( 1 ... n
) )  \  (
( 2nd `  ( 1st `  k ) )
" ( 1 ... ( n  -  1 ) ) ) ) )
186117, 172, 1853eqtr4d 2666 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  n  e.  ( 1 ... N
) )  ->  { ( ( 2nd `  ( 1st `  z ) ) `
 n ) }  =  { ( ( 2nd `  ( 1st `  k ) ) `  n ) } )
187 fvex 6201 . . . . . . . . 9  |-  ( ( 2nd `  ( 1st `  z ) ) `  n )  e.  _V
188187sneqr 4371 . . . . . . . 8  |-  ( { ( ( 2nd `  ( 1st `  z ) ) `
 n ) }  =  { ( ( 2nd `  ( 1st `  k ) ) `  n ) }  ->  ( ( 2nd `  ( 1st `  z ) ) `
 n )  =  ( ( 2nd `  ( 1st `  k ) ) `
 n ) )
189186, 188syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  ( z  e.  S  /\  k  e.  S
) )  /\  (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  z ) ) `
 n )  =  ( ( 2nd `  ( 1st `  k ) ) `
 n ) )
19026, 40, 189eqfnfvd 6314 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  ( 2nd `  ( 1st `  z
) )  =  ( 2nd `  ( 1st `  k ) ) )
191 xpopth 7207 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  ( 1st `  k )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) )  ->  ( ( ( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  k ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( 2nd `  ( 1st `  k ) ) )  <->  ( 1st `  z
)  =  ( 1st `  k ) ) )
19216, 30, 191syl2an 494 . . . . . . 7  |-  ( ( z  e.  S  /\  k  e.  S )  ->  ( ( ( 1st `  ( 1st `  z
) )  =  ( 1st `  ( 1st `  k ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( 2nd `  ( 1st `  k ) ) )  <->  ( 1st `  z
)  =  ( 1st `  k ) ) )
193192ad2antlr 763 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  (
( ( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  k ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( 2nd `  ( 1st `  k ) ) )  <->  ( 1st `  z
)  =  ( 1st `  k ) ) )
19412, 190, 193mpbi2and 956 . . . . 5  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  ( 1st `  z )  =  ( 1st `  k
) )
195 eqtr3 2643 . . . . . 6  |-  ( ( ( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 )  ->  ( 2nd `  z
)  =  ( 2nd `  k ) )
196195adantl 482 . . . . 5  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  ( 2nd `  z )  =  ( 2nd `  k
) )
197 xpopth 7207 . . . . . . 7  |-  ( ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  k  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  ->  ( (
( 1st `  z
)  =  ( 1st `  k )  /\  ( 2nd `  z )  =  ( 2nd `  k
) )  <->  z  =  k ) )
19814, 28, 197syl2an 494 . . . . . 6  |-  ( ( z  e.  S  /\  k  e.  S )  ->  ( ( ( 1st `  z )  =  ( 1st `  k )  /\  ( 2nd `  z
)  =  ( 2nd `  k ) )  <->  z  =  k ) )
199198ad2antlr 763 . . . . 5  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  (
( ( 1st `  z
)  =  ( 1st `  k )  /\  ( 2nd `  z )  =  ( 2nd `  k
) )  <->  z  =  k ) )
200194, 196, 199mpbi2and 956 . . . 4  |-  ( ( ( ph  /\  (
z  e.  S  /\  k  e.  S )
)  /\  ( ( 2nd `  z )  =  0  /\  ( 2nd `  k )  =  0 ) )  ->  z  =  k )
201200ex 450 . . 3  |-  ( (
ph  /\  ( z  e.  S  /\  k  e.  S ) )  -> 
( ( ( 2nd `  z )  =  0  /\  ( 2nd `  k
)  =  0 )  ->  z  =  k ) )
202201ralrimivva 2971 . 2  |-  ( ph  ->  A. z  e.  S  A. k  e.  S  ( ( ( 2nd `  z )  =  0  /\  ( 2nd `  k
)  =  0 )  ->  z  =  k ) )
203 fveq2 6191 . . . 4  |-  ( z  =  k  ->  ( 2nd `  z )  =  ( 2nd `  k
) )
204203eqeq1d 2624 . . 3  |-  ( z  =  k  ->  (
( 2nd `  z
)  =  0  <->  ( 2nd `  k )  =  0 ) )
205204rmo4 3399 . 2  |-  ( E* z  e.  S  ( 2nd `  z )  =  0  <->  A. z  e.  S  A. k  e.  S  ( (
( 2nd `  z
)  =  0  /\  ( 2nd `  k
)  =  0 )  ->  z  =  k ) )
206202, 205sylibr 224 1  |-  ( ph  ->  E* z  e.  S  ( 2nd `  z )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E*wrmo 2915   {crab 2916   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem18  33427  poimirlem21  33430
  Copyright terms: Public domain W3C validator