Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof Structured version   Visualization version   Unicode version

Theorem prmdvdsfmtnof 41498
Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1  |-  F  =  ( f  e.  ran FermatNo  |-> inf ( { p  e.  Prime  |  p  ||  f } ,  RR ,  <  ) )
Assertion
Ref Expression
prmdvdsfmtnof  |-  F : ran FermatNo --> Prime
Distinct variable group:    f, p
Allowed substitution hints:    F( f, p)

Proof of Theorem prmdvdsfmtnof
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . 2  |-  F  =  ( f  e.  ran FermatNo  |-> inf ( { p  e.  Prime  |  p  ||  f } ,  RR ,  <  ) )
2 fmtnorn 41446 . . 3  |-  ( f  e.  ran FermatNo  <->  E. n  e.  NN0  (FermatNo `  n )  =  f )
3 ltso 10118 . . . . . 6  |-  <  Or  RR
43a1i 11 . . . . 5  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  <  Or  RR )
5 fmtnoge3 41442 . . . . . . . . 9  |-  ( n  e.  NN0  ->  (FermatNo `  n
)  e.  ( ZZ>= ` 
3 ) )
65adantr 481 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  (FermatNo `  n )  e.  (
ZZ>= `  3 ) )
7 eleq1 2689 . . . . . . . . 9  |-  ( (FermatNo `  n )  =  f  ->  ( (FermatNo `  n
)  e.  ( ZZ>= ` 
3 )  <->  f  e.  ( ZZ>= `  3 )
) )
87adantl 482 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  (
(FermatNo `  n )  e.  ( ZZ>= `  3 )  <->  f  e.  ( ZZ>= `  3
) ) )
96, 8mpbid 222 . . . . . . 7  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  f  e.  ( ZZ>= `  3 )
)
10 uzuzle23 11729 . . . . . . 7  |-  ( f  e.  ( ZZ>= `  3
)  ->  f  e.  ( ZZ>= `  2 )
)
119, 10syl 17 . . . . . 6  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  f  e.  ( ZZ>= `  2 )
)
12 eluz2nn 11726 . . . . . 6  |-  ( f  e.  ( ZZ>= `  2
)  ->  f  e.  NN )
13 prmdvdsfi 24833 . . . . . 6  |-  ( f  e.  NN  ->  { p  e.  Prime  |  p  ||  f }  e.  Fin )
1411, 12, 133syl 18 . . . . 5  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  { p  e.  Prime  |  p  ||  f }  e.  Fin )
15 uzuzle23 11729 . . . . . . . . . 10  |-  ( (FermatNo `  n )  e.  (
ZZ>= `  3 )  -> 
(FermatNo `  n )  e.  ( ZZ>= `  2 )
)
165, 15syl 17 . . . . . . . . 9  |-  ( n  e.  NN0  ->  (FermatNo `  n
)  e.  ( ZZ>= ` 
2 ) )
1716adantr 481 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  (FermatNo `  n )  e.  (
ZZ>= `  2 ) )
18 eleq1 2689 . . . . . . . . 9  |-  ( (FermatNo `  n )  =  f  ->  ( (FermatNo `  n
)  e.  ( ZZ>= ` 
2 )  <->  f  e.  ( ZZ>= `  2 )
) )
1918adantl 482 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  (
(FermatNo `  n )  e.  ( ZZ>= `  2 )  <->  f  e.  ( ZZ>= `  2
) ) )
2017, 19mpbid 222 . . . . . . 7  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  f  e.  ( ZZ>= `  2 )
)
21 exprmfct 15416 . . . . . . 7  |-  ( f  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  f
)
2220, 21syl 17 . . . . . 6  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  E. p  e.  Prime  p  ||  f
)
23 rabn0 3958 . . . . . 6  |-  ( { p  e.  Prime  |  p 
||  f }  =/=  (/)  <->  E. p  e.  Prime  p  ||  f )
2422, 23sylibr 224 . . . . 5  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  { p  e.  Prime  |  p  ||  f }  =/=  (/) )
25 ssrab2 3687 . . . . . . 7  |-  { p  e.  Prime  |  p  ||  f }  C_  Prime
26 prmssnn 15390 . . . . . . . 8  |-  Prime  C_  NN
27 nnssre 11024 . . . . . . . 8  |-  NN  C_  RR
2826, 27sstri 3612 . . . . . . 7  |-  Prime  C_  RR
2925, 28sstri 3612 . . . . . 6  |-  { p  e.  Prime  |  p  ||  f }  C_  RR
3029a1i 11 . . . . 5  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  ->  { p  e.  Prime  |  p  ||  f }  C_  RR )
31 fiinfcl 8407 . . . . . 6  |-  ( (  <  Or  RR  /\  ( { p  e.  Prime  |  p  ||  f }  e.  Fin  /\  {
p  e.  Prime  |  p 
||  f }  =/=  (/) 
/\  { p  e. 
Prime  |  p  ||  f }  C_  RR ) )  -> inf ( { p  e.  Prime  |  p  ||  f } ,  RR ,  <  )  e.  { p  e.  Prime  |  p  ||  f } )
3225, 31sseldi 3601 . . . . 5  |-  ( (  <  Or  RR  /\  ( { p  e.  Prime  |  p  ||  f }  e.  Fin  /\  {
p  e.  Prime  |  p 
||  f }  =/=  (/) 
/\  { p  e. 
Prime  |  p  ||  f }  C_  RR ) )  -> inf ( { p  e.  Prime  |  p  ||  f } ,  RR ,  <  )  e.  Prime )
334, 14, 24, 30, 32syl13anc 1328 . . . 4  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  f )  -> inf ( { p  e.  Prime  |  p 
||  f } ,  RR ,  <  )  e. 
Prime )
3433rexlimiva 3028 . . 3  |-  ( E. n  e.  NN0  (FermatNo `  n )  =  f  -> inf ( { p  e.  Prime  |  p  ||  f } ,  RR ,  <  )  e.  Prime )
352, 34sylbi 207 . 2  |-  ( f  e.  ran FermatNo  -> inf ( {
p  e.  Prime  |  p 
||  f } ,  RR ,  <  )  e. 
Prime )
361, 35fmpti 6383 1  |-  F : ran FermatNo --> Prime
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   ran crn 5115   -->wf 5884   ` cfv 5888   Fincfn 7955  infcinf 8347   RRcr 9935    < clt 10074   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   ZZ>=cuz 11687    || cdvds 14983   Primecprime 15385  FermatNocfmtno 41439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-fmtno 41440
This theorem is referenced by:  prmdvdsfmtnof1  41499
  Copyright terms: Public domain W3C validator