Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem2 Structured version   Visualization version   Unicode version

Theorem prmdvdsfmtnof1lem2 41497
Description: Lemma 2 for prmdvdsfmtnof1 41499. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
prmdvdsfmtnof1lem2  |-  ( ( F  e.  ran FermatNo  /\  G  e.  ran FermatNo )  ->  ( ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G ) )

Proof of Theorem prmdvdsfmtnof1lem2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmtnorn 41446 . 2  |-  ( F  e.  ran FermatNo  <->  E. n  e.  NN0  (FermatNo `  n )  =  F )
2 fmtnorn 41446 . 2  |-  ( G  e.  ran FermatNo  <->  E. m  e.  NN0  (FermatNo `  m )  =  G )
3 2a1 28 . . . . . . . 8  |-  ( F  =  G  ->  (
(FermatNo `  n )  =  F  ->  ( (
I  e.  Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G ) ) )
432a1d 26 . . . . . . 7  |-  ( F  =  G  ->  (
( n  e.  NN0  /\  m  e.  NN0 )  ->  ( (FermatNo `  m
)  =  G  -> 
( (FermatNo `  n )  =  F  ->  ( ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G ) ) ) ) )
5 fmtnonn 41443 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  (FermatNo `  n
)  e.  NN )
65ad2antrl 764 . . . . . . . . . . 11  |-  ( ( -.  F  =  G  /\  ( n  e. 
NN0  /\  m  e.  NN0 ) )  ->  (FermatNo `  n )  e.  NN )
76adantr 481 . . . . . . . . . 10  |-  ( ( ( -.  F  =  G  /\  ( n  e.  NN0  /\  m  e.  NN0 ) )  /\  ( (FermatNo `  m )  =  G  /\  (FermatNo `  n )  =  F ) )  ->  (FermatNo `  n )  e.  NN )
8 eleq1 2689 . . . . . . . . . . 11  |-  ( (FermatNo `  n )  =  F  ->  ( (FermatNo `  n
)  e.  NN  <->  F  e.  NN ) )
98ad2antll 765 . . . . . . . . . 10  |-  ( ( ( -.  F  =  G  /\  ( n  e.  NN0  /\  m  e.  NN0 ) )  /\  ( (FermatNo `  m )  =  G  /\  (FermatNo `  n )  =  F ) )  ->  (
(FermatNo `  n )  e.  NN  <->  F  e.  NN ) )
107, 9mpbid 222 . . . . . . . . 9  |-  ( ( ( -.  F  =  G  /\  ( n  e.  NN0  /\  m  e.  NN0 ) )  /\  ( (FermatNo `  m )  =  G  /\  (FermatNo `  n )  =  F ) )  ->  F  e.  NN )
11 fmtnonn 41443 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  (FermatNo `  m
)  e.  NN )
1211ad2antll 765 . . . . . . . . . . 11  |-  ( ( -.  F  =  G  /\  ( n  e. 
NN0  /\  m  e.  NN0 ) )  ->  (FermatNo `  m )  e.  NN )
1312adantr 481 . . . . . . . . . 10  |-  ( ( ( -.  F  =  G  /\  ( n  e.  NN0  /\  m  e.  NN0 ) )  /\  ( (FermatNo `  m )  =  G  /\  (FermatNo `  n )  =  F ) )  ->  (FermatNo `  m )  e.  NN )
14 eleq1 2689 . . . . . . . . . . 11  |-  ( (FermatNo `  m )  =  G  ->  ( (FermatNo `  m
)  e.  NN  <->  G  e.  NN ) )
1514ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( -.  F  =  G  /\  ( n  e.  NN0  /\  m  e.  NN0 ) )  /\  ( (FermatNo `  m )  =  G  /\  (FermatNo `  n )  =  F ) )  ->  (
(FermatNo `  m )  e.  NN  <->  G  e.  NN ) )
1613, 15mpbid 222 . . . . . . . . 9  |-  ( ( ( -.  F  =  G  /\  ( n  e.  NN0  /\  m  e.  NN0 ) )  /\  ( (FermatNo `  m )  =  G  /\  (FermatNo `  n )  =  F ) )  ->  G  e.  NN )
17 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  m  e.  NN0 )  /\  -.  (FermatNo `  n
)  =  (FermatNo `  m
) )  ->  n  e.  NN0 )
18 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  m  e.  NN0 )  /\  -.  (FermatNo `  n
)  =  (FermatNo `  m
) )  ->  m  e.  NN0 )
19 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  m  ->  (FermatNo `  n )  =  (FermatNo `  m ) )
2019con3i 150 . . . . . . . . . . . . . . . . 17  |-  ( -.  (FermatNo `  n )  =  (FermatNo `  m )  ->  -.  n  =  m )
2120adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN0  /\  m  e.  NN0 )  /\  -.  (FermatNo `  n
)  =  (FermatNo `  m
) )  ->  -.  n  =  m )
2221neqned 2801 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  m  e.  NN0 )  /\  -.  (FermatNo `  n
)  =  (FermatNo `  m
) )  ->  n  =/=  m )
23 goldbachth 41459 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN0  /\  m  e.  NN0  /\  n  =/=  m )  ->  (
(FermatNo `  n )  gcd  (FermatNo `  m )
)  =  1 )
2417, 18, 22, 23syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  m  e.  NN0 )  /\  -.  (FermatNo `  n
)  =  (FermatNo `  m
) )  ->  (
(FermatNo `  n )  gcd  (FermatNo `  m )
)  =  1 )
2524ex 450 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN0  /\  m  e.  NN0 )  -> 
( -.  (FermatNo `  n
)  =  (FermatNo `  m
)  ->  ( (FermatNo `  n )  gcd  (FermatNo `  m ) )  =  1 ) )
26 eqeq12 2635 . . . . . . . . . . . . . . . 16  |-  ( ( (FermatNo `  n )  =  F  /\  (FermatNo `  m )  =  G )  ->  ( (FermatNo `  n )  =  (FermatNo `  m )  <->  F  =  G ) )
2726notbid 308 . . . . . . . . . . . . . . 15  |-  ( ( (FermatNo `  n )  =  F  /\  (FermatNo `  m )  =  G )  ->  ( -.  (FermatNo `  n )  =  (FermatNo `  m )  <->  -.  F  =  G ) )
28 oveq12 6659 . . . . . . . . . . . . . . . 16  |-  ( ( (FermatNo `  n )  =  F  /\  (FermatNo `  m )  =  G )  ->  ( (FermatNo `  n )  gcd  (FermatNo `  m ) )  =  ( F  gcd  G
) )
2928eqeq1d 2624 . . . . . . . . . . . . . . 15  |-  ( ( (FermatNo `  n )  =  F  /\  (FermatNo `  m )  =  G )  ->  ( (
(FermatNo `  n )  gcd  (FermatNo `  m )
)  =  1  <->  ( F  gcd  G )  =  1 ) )
3027, 29imbi12d 334 . . . . . . . . . . . . . 14  |-  ( ( (FermatNo `  n )  =  F  /\  (FermatNo `  m )  =  G )  ->  ( ( -.  (FermatNo `  n )  =  (FermatNo `  m )  ->  ( (FermatNo `  n
)  gcd  (FermatNo `  m
) )  =  1 )  <->  ( -.  F  =  G  ->  ( F  gcd  G )  =  1 ) ) )
3130ancoms 469 . . . . . . . . . . . . 13  |-  ( ( (FermatNo `  m )  =  G  /\  (FermatNo `  n )  =  F )  ->  ( ( -.  (FermatNo `  n )  =  (FermatNo `  m )  ->  ( (FermatNo `  n
)  gcd  (FermatNo `  m
) )  =  1 )  <->  ( -.  F  =  G  ->  ( F  gcd  G )  =  1 ) ) )
3225, 31syl5ibcom 235 . . . . . . . . . . . 12  |-  ( ( n  e.  NN0  /\  m  e.  NN0 )  -> 
( ( (FermatNo `  m
)  =  G  /\  (FermatNo `  n )  =  F )  ->  ( -.  F  =  G  ->  ( F  gcd  G
)  =  1 ) ) )
3332com23 86 . . . . . . . . . . 11  |-  ( ( n  e.  NN0  /\  m  e.  NN0 )  -> 
( -.  F  =  G  ->  ( (
(FermatNo `  m )  =  G  /\  (FermatNo `  n
)  =  F )  ->  ( F  gcd  G )  =  1 ) ) )
3433impcom 446 . . . . . . . . . 10  |-  ( ( -.  F  =  G  /\  ( n  e. 
NN0  /\  m  e.  NN0 ) )  ->  (
( (FermatNo `  m )  =  G  /\  (FermatNo `  n )  =  F )  ->  ( F  gcd  G )  =  1 ) )
3534imp 445 . . . . . . . . 9  |-  ( ( ( -.  F  =  G  /\  ( n  e.  NN0  /\  m  e.  NN0 ) )  /\  ( (FermatNo `  m )  =  G  /\  (FermatNo `  n )  =  F ) )  ->  ( F  gcd  G )  =  1 )
36 prmnn 15388 . . . . . . . . . . . 12  |-  ( I  e.  Prime  ->  I  e.  NN )
37 coprmdvds1 15365 . . . . . . . . . . . . 13  |-  ( ( F  e.  NN  /\  G  e.  NN  /\  ( F  gcd  G )  =  1 )  ->  (
( I  e.  NN  /\  I  ||  F  /\  I  ||  G )  ->  I  =  1 ) )
3837imp 445 . . . . . . . . . . . 12  |-  ( ( ( F  e.  NN  /\  G  e.  NN  /\  ( F  gcd  G )  =  1 )  /\  ( I  e.  NN  /\  I  ||  F  /\  I  ||  G ) )  ->  I  =  1 )
3936, 38syl3anr1 1378 . . . . . . . . . . 11  |-  ( ( ( F  e.  NN  /\  G  e.  NN  /\  ( F  gcd  G )  =  1 )  /\  ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G ) )  ->  I  =  1 )
40 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( I  =  1  ->  (
I  e.  Prime  <->  1  e.  Prime ) )
41 1nprm 15392 . . . . . . . . . . . . . . . . 17  |-  -.  1  e.  Prime
4241pm2.21i 116 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  Prime  ->  F  =  G )
4340, 42syl6bi 243 . . . . . . . . . . . . . . 15  |-  ( I  =  1  ->  (
I  e.  Prime  ->  F  =  G ) )
4443com12 32 . . . . . . . . . . . . . 14  |-  ( I  e.  Prime  ->  ( I  =  1  ->  F  =  G ) )
4544a1d 25 . . . . . . . . . . . . 13  |-  ( I  e.  Prime  ->  ( ( F  e.  NN  /\  G  e.  NN  /\  ( F  gcd  G )  =  1 )  ->  (
I  =  1  ->  F  =  G )
) )
46453ad2ant1 1082 . . . . . . . . . . . 12  |-  ( ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G )  ->  (
( F  e.  NN  /\  G  e.  NN  /\  ( F  gcd  G )  =  1 )  -> 
( I  =  1  ->  F  =  G ) ) )
4746impcom 446 . . . . . . . . . . 11  |-  ( ( ( F  e.  NN  /\  G  e.  NN  /\  ( F  gcd  G )  =  1 )  /\  ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G ) )  ->  ( I  =  1  ->  F  =  G ) )
4839, 47mpd 15 . . . . . . . . . 10  |-  ( ( ( F  e.  NN  /\  G  e.  NN  /\  ( F  gcd  G )  =  1 )  /\  ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G ) )  ->  F  =  G )
4948ex 450 . . . . . . . . 9  |-  ( ( F  e.  NN  /\  G  e.  NN  /\  ( F  gcd  G )  =  1 )  ->  (
( I  e.  Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G )
)
5010, 16, 35, 49syl3anc 1326 . . . . . . . 8  |-  ( ( ( -.  F  =  G  /\  ( n  e.  NN0  /\  m  e.  NN0 ) )  /\  ( (FermatNo `  m )  =  G  /\  (FermatNo `  n )  =  F ) )  ->  (
( I  e.  Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G )
)
5150exp43 640 . . . . . . 7  |-  ( -.  F  =  G  -> 
( ( n  e. 
NN0  /\  m  e.  NN0 )  ->  ( (FermatNo `  m )  =  G  ->  ( (FermatNo `  n
)  =  F  -> 
( ( I  e. 
Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G ) ) ) ) )
524, 51pm2.61i 176 . . . . . 6  |-  ( ( n  e.  NN0  /\  m  e.  NN0 )  -> 
( (FermatNo `  m )  =  G  ->  ( (FermatNo `  n )  =  F  ->  ( ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G
)  ->  F  =  G ) ) ) )
5352rexlimdva 3031 . . . . 5  |-  ( n  e.  NN0  ->  ( E. m  e.  NN0  (FermatNo `  m )  =  G  ->  ( (FermatNo `  n
)  =  F  -> 
( ( I  e. 
Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G ) ) ) )
5453com23 86 . . . 4  |-  ( n  e.  NN0  ->  ( (FermatNo `  n )  =  F  ->  ( E. m  e.  NN0  (FermatNo `  m )  =  G  ->  ( ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G ) ) ) )
5554rexlimiv 3027 . . 3  |-  ( E. n  e.  NN0  (FermatNo `  n )  =  F  ->  ( E. m  e.  NN0  (FermatNo `  m )  =  G  ->  ( ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G ) ) )
5655imp 445 . 2  |-  ( ( E. n  e.  NN0  (FermatNo `  n )  =  F  /\  E. m  e.  NN0  (FermatNo `  m )  =  G )  ->  (
( I  e.  Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G )
)
571, 2, 56syl2anb 496 1  |-  ( ( F  e.  ran FermatNo  /\  G  e.  ran FermatNo )  ->  ( ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G )  ->  F  =  G ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   1c1 9937   NNcn 11020   NN0cn0 11292    || cdvds 14983    gcd cgcd 15216   Primecprime 15385  FermatNocfmtno 41439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-gcd 15217  df-prm 15386  df-fmtno 41440
This theorem is referenced by:  prmdvdsfmtnof1  41499
  Copyright terms: Public domain W3C validator