Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1 Structured version   Visualization version   Unicode version

Theorem prmdvdsfmtnof1 41499
Description: The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1  |-  F  =  ( f  e.  ran FermatNo  |-> inf ( { p  e.  Prime  |  p  ||  f } ,  RR ,  <  ) )
Assertion
Ref Expression
prmdvdsfmtnof1  |-  F : ran FermatNo -1-1->
Prime
Distinct variable group:    f, p
Allowed substitution hints:    F( f, p)

Proof of Theorem prmdvdsfmtnof1
Dummy variables  g  h  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . . 3  |-  F  =  ( f  e.  ran FermatNo  |-> inf ( { p  e.  Prime  |  p  ||  f } ,  RR ,  <  ) )
21prmdvdsfmtnof 41498 . 2  |-  F : ran FermatNo --> Prime
31a1i 11 . . . . . 6  |-  ( g  e.  ran FermatNo  ->  F  =  ( f  e.  ran FermatNo  |-> inf ( { p  e.  Prime  |  p  ||  f } ,  RR ,  <  ) ) )
4 breq2 4657 . . . . . . . . 9  |-  ( f  =  g  ->  (
p  ||  f  <->  p  ||  g
) )
54rabbidv 3189 . . . . . . . 8  |-  ( f  =  g  ->  { p  e.  Prime  |  p  ||  f }  =  {
p  e.  Prime  |  p 
||  g } )
65infeq1d 8383 . . . . . . 7  |-  ( f  =  g  -> inf ( { p  e.  Prime  |  p 
||  f } ,  RR ,  <  )  = inf ( { p  e. 
Prime  |  p  ||  g } ,  RR ,  <  ) )
76adantl 482 . . . . . 6  |-  ( ( g  e.  ran FermatNo  /\  f  =  g )  -> inf ( { p  e.  Prime  |  p  ||  f } ,  RR ,  <  )  = inf ( { p  e.  Prime  |  p  ||  g } ,  RR ,  <  ) )
8 id 22 . . . . . 6  |-  ( g  e.  ran FermatNo  ->  g  e. 
ran FermatNo )
9 ltso 10118 . . . . . . . 8  |-  <  Or  RR
109a1i 11 . . . . . . 7  |-  ( g  e.  ran FermatNo  ->  <  Or  RR )
1110infexd 8389 . . . . . 6  |-  ( g  e.  ran FermatNo  -> inf ( {
p  e.  Prime  |  p 
||  g } ,  RR ,  <  )  e. 
_V )
123, 7, 8, 11fvmptd 6288 . . . . 5  |-  ( g  e.  ran FermatNo  ->  ( F `
 g )  = inf ( { p  e. 
Prime  |  p  ||  g } ,  RR ,  <  ) )
131a1i 11 . . . . . 6  |-  ( h  e.  ran FermatNo  ->  F  =  ( f  e.  ran FermatNo  |-> inf ( { p  e.  Prime  |  p  ||  f } ,  RR ,  <  ) ) )
14 breq2 4657 . . . . . . . . 9  |-  ( f  =  h  ->  (
p  ||  f  <->  p  ||  h
) )
1514rabbidv 3189 . . . . . . . 8  |-  ( f  =  h  ->  { p  e.  Prime  |  p  ||  f }  =  {
p  e.  Prime  |  p 
||  h } )
1615infeq1d 8383 . . . . . . 7  |-  ( f  =  h  -> inf ( { p  e.  Prime  |  p 
||  f } ,  RR ,  <  )  = inf ( { p  e. 
Prime  |  p  ||  h } ,  RR ,  <  ) )
1716adantl 482 . . . . . 6  |-  ( ( h  e.  ran FermatNo  /\  f  =  h )  -> inf ( { p  e.  Prime  |  p 
||  f } ,  RR ,  <  )  = inf ( { p  e. 
Prime  |  p  ||  h } ,  RR ,  <  ) )
18 id 22 . . . . . 6  |-  ( h  e.  ran FermatNo  ->  h  e. 
ran FermatNo )
199a1i 11 . . . . . . 7  |-  ( h  e.  ran FermatNo  ->  <  Or  RR )
2019infexd 8389 . . . . . 6  |-  ( h  e.  ran FermatNo  -> inf ( {
p  e.  Prime  |  p 
||  h } ,  RR ,  <  )  e. 
_V )
2113, 17, 18, 20fvmptd 6288 . . . . 5  |-  ( h  e.  ran FermatNo  ->  ( F `
 h )  = inf ( { p  e. 
Prime  |  p  ||  h } ,  RR ,  <  ) )
2212, 21eqeqan12d 2638 . . . 4  |-  ( ( g  e.  ran FermatNo  /\  h  e.  ran FermatNo )  ->  ( ( F `  g )  =  ( F `  h )  <-> inf ( {
p  e.  Prime  |  p 
||  g } ,  RR ,  <  )  = inf ( { p  e. 
Prime  |  p  ||  h } ,  RR ,  <  ) ) )
23 fmtnorn 41446 . . . . . . 7  |-  ( g  e.  ran FermatNo  <->  E. n  e.  NN0  (FermatNo `  n )  =  g )
24 fmtnoge3 41442 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  (FermatNo `  n
)  e.  ( ZZ>= ` 
3 ) )
25 uzuzle23 11729 . . . . . . . . . . 11  |-  ( (FermatNo `  n )  e.  (
ZZ>= `  3 )  -> 
(FermatNo `  n )  e.  ( ZZ>= `  2 )
)
2624, 25syl 17 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  (FermatNo `  n
)  e.  ( ZZ>= ` 
2 ) )
2726adantr 481 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  g )  ->  (FermatNo `  n )  e.  (
ZZ>= `  2 ) )
28 eleq1 2689 . . . . . . . . . 10  |-  ( (FermatNo `  n )  =  g  ->  ( (FermatNo `  n
)  e.  ( ZZ>= ` 
2 )  <->  g  e.  ( ZZ>= `  2 )
) )
2928adantl 482 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  g )  ->  (
(FermatNo `  n )  e.  ( ZZ>= `  2 )  <->  g  e.  ( ZZ>= `  2
) ) )
3027, 29mpbid 222 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  g )  ->  g  e.  ( ZZ>= `  2 )
)
3130rexlimiva 3028 . . . . . . 7  |-  ( E. n  e.  NN0  (FermatNo `  n )  =  g  ->  g  e.  (
ZZ>= `  2 ) )
3223, 31sylbi 207 . . . . . 6  |-  ( g  e.  ran FermatNo  ->  g  e.  ( ZZ>= `  2 )
)
33 fmtnorn 41446 . . . . . . 7  |-  ( h  e.  ran FermatNo  <->  E. n  e.  NN0  (FermatNo `  n )  =  h )
3426adantr 481 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  h )  ->  (FermatNo `  n )  e.  (
ZZ>= `  2 ) )
35 eleq1 2689 . . . . . . . . . 10  |-  ( (FermatNo `  n )  =  h  ->  ( (FermatNo `  n
)  e.  ( ZZ>= ` 
2 )  <->  h  e.  ( ZZ>= `  2 )
) )
3635adantl 482 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  h )  ->  (
(FermatNo `  n )  e.  ( ZZ>= `  2 )  <->  h  e.  ( ZZ>= `  2
) ) )
3734, 36mpbid 222 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  (FermatNo `  n )  =  h )  ->  h  e.  ( ZZ>= `  2 )
)
3837rexlimiva 3028 . . . . . . 7  |-  ( E. n  e.  NN0  (FermatNo `  n )  =  h  ->  h  e.  (
ZZ>= `  2 ) )
3933, 38sylbi 207 . . . . . 6  |-  ( h  e.  ran FermatNo  ->  h  e.  ( ZZ>= `  2 )
)
40 eqid 2622 . . . . . . 7  |- inf ( { p  e.  Prime  |  p 
||  g } ,  RR ,  <  )  = inf ( { p  e. 
Prime  |  p  ||  g } ,  RR ,  <  )
41 eqid 2622 . . . . . . 7  |- inf ( { p  e.  Prime  |  p 
||  h } ,  RR ,  <  )  = inf ( { p  e. 
Prime  |  p  ||  h } ,  RR ,  <  )
4240, 41prmdvdsfmtnof1lem1 41496 . . . . . 6  |-  ( ( g  e.  ( ZZ>= ` 
2 )  /\  h  e.  ( ZZ>= `  2 )
)  ->  (inf ( { p  e.  Prime  |  p  ||  g } ,  RR ,  <  )  = inf ( { p  e.  Prime  |  p  ||  h } ,  RR ,  <  )  ->  (inf ( { p  e.  Prime  |  p  ||  g } ,  RR ,  <  )  e.  Prime  /\ inf ( { p  e.  Prime  |  p 
||  g } ,  RR ,  <  )  ||  g  /\ inf ( { p  e.  Prime  |  p  ||  g } ,  RR ,  <  )  ||  h ) ) )
4332, 39, 42syl2an 494 . . . . 5  |-  ( ( g  e.  ran FermatNo  /\  h  e.  ran FermatNo )  ->  (inf ( { p  e.  Prime  |  p  ||  g } ,  RR ,  <  )  = inf ( { p  e.  Prime  |  p  ||  h } ,  RR ,  <  )  ->  (inf ( { p  e.  Prime  |  p  ||  g } ,  RR ,  <  )  e.  Prime  /\ inf ( { p  e.  Prime  |  p 
||  g } ,  RR ,  <  )  ||  g  /\ inf ( { p  e.  Prime  |  p  ||  g } ,  RR ,  <  )  ||  h ) ) )
44 prmdvdsfmtnof1lem2 41497 . . . . 5  |-  ( ( g  e.  ran FermatNo  /\  h  e.  ran FermatNo )  ->  ( (inf ( { p  e. 
Prime  |  p  ||  g } ,  RR ,  <  )  e.  Prime  /\ inf ( { p  e.  Prime  |  p  ||  g } ,  RR ,  <  ) 
||  g  /\ inf ( { p  e.  Prime  |  p  ||  g } ,  RR ,  <  ) 
||  h )  -> 
g  =  h ) )
4543, 44syld 47 . . . 4  |-  ( ( g  e.  ran FermatNo  /\  h  e.  ran FermatNo )  ->  (inf ( { p  e.  Prime  |  p  ||  g } ,  RR ,  <  )  = inf ( { p  e.  Prime  |  p  ||  h } ,  RR ,  <  )  ->  g  =  h ) )
4622, 45sylbid 230 . . 3  |-  ( ( g  e.  ran FermatNo  /\  h  e.  ran FermatNo )  ->  ( ( F `  g )  =  ( F `  h )  ->  g  =  h ) )
4746rgen2a 2977 . 2  |-  A. g  e.  ran FermatNo A. h  e.  ran FermatNo ( ( F `  g
)  =  ( F `
 h )  -> 
g  =  h )
48 dff13 6512 . 2  |-  ( F : ran FermatNo -1-1-> Prime 
<->  ( F : ran FermatNo --> Prime  /\  A. g  e.  ran FermatNo A. h  e.  ran FermatNo ( ( F `  g )  =  ( F `  h )  ->  g  =  h ) ) )
492, 47, 48mpbir2an 955 1  |-  F : ran FermatNo -1-1->
Prime
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   ran crn 5115   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  infcinf 8347   RRcr 9935    < clt 10074   2c2 11070   3c3 11071   NN0cn0 11292   ZZ>=cuz 11687    || cdvds 14983   Primecprime 15385  FermatNocfmtno 41439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-gcd 15217  df-prm 15386  df-fmtno 41440
This theorem is referenced by:  prminf2  41500
  Copyright terms: Public domain W3C validator