MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prod1 Structured version   Visualization version   Unicode version

Theorem prod1 14674
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.)
Assertion
Ref Expression
prod1  |-  ( ( A  C_  ( ZZ>= `  M )  \/  A  e.  Fin )  ->  prod_ k  e.  A  1  =  1 )
Distinct variable groups:    A, k    k, M

Proof of Theorem prod1
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 simpr 477 . . . 4  |-  ( ( A  C_  ( ZZ>= `  M )  /\  M  e.  ZZ )  ->  M  e.  ZZ )
3 ax-1ne0 10005 . . . . 5  |-  1  =/=  0
43a1i 11 . . . 4  |-  ( ( A  C_  ( ZZ>= `  M )  /\  M  e.  ZZ )  ->  1  =/=  0 )
51prodfclim1 14625 . . . . 5  |-  ( M  e.  ZZ  ->  seq M (  x.  , 
( ( ZZ>= `  M
)  X.  { 1 } ) )  ~~>  1 )
65adantl 482 . . . 4  |-  ( ( A  C_  ( ZZ>= `  M )  /\  M  e.  ZZ )  ->  seq M (  x.  , 
( ( ZZ>= `  M
)  X.  { 1 } ) )  ~~>  1 )
7 simpl 473 . . . 4  |-  ( ( A  C_  ( ZZ>= `  M )  /\  M  e.  ZZ )  ->  A  C_  ( ZZ>= `  M )
)
8 1ex 10035 . . . . . . 7  |-  1  e.  _V
98fvconst2 6469 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ZZ>= `  M )  X.  { 1 } ) `
 k )  =  1 )
10 ifid 4125 . . . . . 6  |-  if ( k  e.  A , 
1 ,  1 )  =  1
119, 10syl6eqr 2674 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ZZ>= `  M )  X.  { 1 } ) `
 k )  =  if ( k  e.  A ,  1 ,  1 ) )
1211adantl 482 . . . 4  |-  ( ( ( A  C_  ( ZZ>=
`  M )  /\  M  e.  ZZ )  /\  k  e.  ( ZZ>=
`  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 1 } ) `
 k )  =  if ( k  e.  A ,  1 ,  1 ) )
13 1cnd 10056 . . . 4  |-  ( ( ( A  C_  ( ZZ>=
`  M )  /\  M  e.  ZZ )  /\  k  e.  A
)  ->  1  e.  CC )
141, 2, 4, 6, 7, 12, 13zprodn0 14669 . . 3  |-  ( ( A  C_  ( ZZ>= `  M )  /\  M  e.  ZZ )  ->  prod_ k  e.  A  1  =  1 )
15 uzf 11690 . . . . . . . . 9  |-  ZZ>= : ZZ --> ~P ZZ
1615fdmi 6052 . . . . . . . 8  |-  dom  ZZ>=  =  ZZ
1716eleq2i 2693 . . . . . . 7  |-  ( M  e.  dom  ZZ>=  <->  M  e.  ZZ )
18 ndmfv 6218 . . . . . . 7  |-  ( -.  M  e.  dom  ZZ>=  -> 
( ZZ>= `  M )  =  (/) )
1917, 18sylnbir 321 . . . . . 6  |-  ( -.  M  e.  ZZ  ->  (
ZZ>= `  M )  =  (/) )
2019sseq2d 3633 . . . . 5  |-  ( -.  M  e.  ZZ  ->  ( A  C_  ( ZZ>= `  M )  <->  A  C_  (/) ) )
2120biimpac 503 . . . 4  |-  ( ( A  C_  ( ZZ>= `  M )  /\  -.  M  e.  ZZ )  ->  A  C_  (/) )
22 ss0 3974 . . . 4  |-  ( A 
C_  (/)  ->  A  =  (/) )
23 prodeq1 14639 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  1  =  prod_ k  e.  (/)  1 )
24 prod0 14673 . . . . 5  |-  prod_ k  e.  (/)  1  =  1
2523, 24syl6eq 2672 . . . 4  |-  ( A  =  (/)  ->  prod_ k  e.  A  1  = 
1 )
2621, 22, 253syl 18 . . 3  |-  ( ( A  C_  ( ZZ>= `  M )  /\  -.  M  e.  ZZ )  ->  prod_ k  e.  A 
1  =  1 )
2714, 26pm2.61dan 832 . 2  |-  ( A 
C_  ( ZZ>= `  M
)  ->  prod_ k  e.  A  1  =  1 )
28 fz1f1o 14441 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
29 eqidd 2623 . . . . . . . . 9  |-  ( k  =  ( f `  j )  ->  1  =  1 )
30 simpl 473 . . . . . . . . 9  |-  ( ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  ->  ( # `
 A )  e.  NN )
31 simpr 477 . . . . . . . . 9  |-  ( ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
32 1cnd 10056 . . . . . . . . 9  |-  ( ( ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  k  e.  A )  ->  1  e.  CC )
33 elfznn 12370 . . . . . . . . . . 11  |-  ( j  e.  ( 1 ... ( # `  A
) )  ->  j  e.  NN )
348fvconst2 6469 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  (
( NN  X.  {
1 } ) `  j )  =  1 )
3533, 34syl 17 . . . . . . . . . 10  |-  ( j  e.  ( 1 ... ( # `  A
) )  ->  (
( NN  X.  {
1 } ) `  j )  =  1 )
3635adantl 482 . . . . . . . . 9  |-  ( ( ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  j  e.  ( 1 ... ( # `
 A ) ) )  ->  ( ( NN  X.  { 1 } ) `  j )  =  1 )
3729, 30, 31, 32, 36fprod 14671 . . . . . . . 8  |-  ( ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  ->  prod_ k  e.  A  1  =  (  seq 1 (  x.  ,  ( NN 
X.  { 1 } ) ) `  ( # `
 A ) ) )
38 nnuz 11723 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
3938prodf1 14623 . . . . . . . . 9  |-  ( (
# `  A )  e.  NN  ->  (  seq 1 (  x.  , 
( NN  X.  {
1 } ) ) `
 ( # `  A
) )  =  1 )
4039adantr 481 . . . . . . . 8  |-  ( ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  ->  (  seq 1 (  x.  , 
( NN  X.  {
1 } ) ) `
 ( # `  A
) )  =  1 )
4137, 40eqtrd 2656 . . . . . . 7  |-  ( ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  ->  prod_ k  e.  A  1  =  1 )
4241ex 450 . . . . . 6  |-  ( (
# `  A )  e.  NN  ->  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  prod_ k  e.  A  1  =  1 ) )
4342exlimdv 1861 . . . . 5  |-  ( (
# `  A )  e.  NN  ->  ( E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A  ->  prod_ k  e.  A  1  =  1 ) )
4443imp 445 . . . 4  |-  ( ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A 
1  =  1 )
4525, 44jaoi 394 . . 3  |-  ( ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  1  =  1 )
4628, 45syl 17 . 2  |-  ( A  e.  Fin  ->  prod_ k  e.  A  1  =  1 )
4727, 46jaoi 394 1  |-  ( ( A  C_  ( ZZ>= `  M )  \/  A  e.  Fin )  ->  prod_ k  e.  A  1  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   class class class wbr 4653    X. cxp 5112   dom cdm 5114   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117    ~~> cli 14215   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  fprodex01  29571  etransclem35  40486
  Copyright terms: Public domain W3C validator