MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodmolem3 Structured version   Visualization version   Unicode version

Theorem prodmolem3 14663
Description: Lemma for prodmo 14666. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmo.3  |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
)  /  k ]_ B )
prodmolem3.4  |-  H  =  ( j  e.  NN  |->  [_ ( K `  j
)  /  k ]_ B )
prodmolem3.5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
prodmolem3.6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
prodmolem3.7  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
Assertion
Ref Expression
prodmolem3  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
Distinct variable groups:    A, k    k, F    ph, k    B, j   
f, j, k    j, G    j, k, ph    j, K   
j, M
Allowed substitution hints:    ph( f)    A( f, j)    B( f, k)    F( f, j)    G( f, k)    H( f, j, k)    K( f, k)    M( f, k)    N( f, j, k)

Proof of Theorem prodmolem3
Dummy variables  i  m  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 10020 . . . 4  |-  ( ( m  e.  CC  /\  j  e.  CC )  ->  ( m  x.  j
)  e.  CC )
21adantl 482 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  j  e.  CC ) )  -> 
( m  x.  j
)  e.  CC )
3 mulcom 10022 . . . 4  |-  ( ( m  e.  CC  /\  j  e.  CC )  ->  ( m  x.  j
)  =  ( j  x.  m ) )
43adantl 482 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  j  e.  CC ) )  -> 
( m  x.  j
)  =  ( j  x.  m ) )
5 mulass 10024 . . . 4  |-  ( ( m  e.  CC  /\  j  e.  CC  /\  z  e.  CC )  ->  (
( m  x.  j
)  x.  z )  =  ( m  x.  ( j  x.  z
) ) )
65adantl 482 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  j  e.  CC  /\  z  e.  CC ) )  -> 
( ( m  x.  j )  x.  z
)  =  ( m  x.  ( j  x.  z ) ) )
7 prodmolem3.5 . . . . 5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
87simpld 475 . . . 4  |-  ( ph  ->  M  e.  NN )
9 nnuz 11723 . . . 4  |-  NN  =  ( ZZ>= `  1 )
108, 9syl6eleq 2711 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
11 ssid 3624 . . . 4  |-  CC  C_  CC
1211a1i 11 . . 3  |-  ( ph  ->  CC  C_  CC )
13 prodmolem3.6 . . . . . 6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
14 f1ocnv 6149 . . . . . 6  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  `' f : A -1-1-onto-> ( 1 ... M
) )
1513, 14syl 17 . . . . 5  |-  ( ph  ->  `' f : A -1-1-onto-> (
1 ... M ) )
16 prodmolem3.7 . . . . 5  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
17 f1oco 6159 . . . . 5  |-  ( ( `' f : A -1-1-onto-> (
1 ... M )  /\  K : ( 1 ... N ) -1-1-onto-> A )  ->  ( `' f  o.  K
) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
1815, 16, 17syl2anc 693 . . . 4  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
19 ovex 6678 . . . . . . . . . 10  |-  ( 1 ... N )  e. 
_V
2019f1oen 7976 . . . . . . . . 9  |-  ( ( `' f  o.  K
) : ( 1 ... N ) -1-1-onto-> ( 1 ... M )  -> 
( 1 ... N
)  ~~  ( 1 ... M ) )
2118, 20syl 17 . . . . . . . 8  |-  ( ph  ->  ( 1 ... N
)  ~~  ( 1 ... M ) )
22 fzfi 12771 . . . . . . . . 9  |-  ( 1 ... N )  e. 
Fin
23 fzfi 12771 . . . . . . . . 9  |-  ( 1 ... M )  e. 
Fin
24 hashen 13135 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( 1 ... M
)  e.  Fin )  ->  ( ( # `  (
1 ... N ) )  =  ( # `  (
1 ... M ) )  <-> 
( 1 ... N
)  ~~  ( 1 ... M ) ) )
2522, 23, 24mp2an 708 . . . . . . . 8  |-  ( (
# `  ( 1 ... N ) )  =  ( # `  (
1 ... M ) )  <-> 
( 1 ... N
)  ~~  ( 1 ... M ) )
2621, 25sylibr 224 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  ( # `  (
1 ... M ) ) )
277simprd 479 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
2827nnnn0d 11351 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
29 hashfz1 13134 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
3028, 29syl 17 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  N )
318nnnn0d 11351 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
32 hashfz1 13134 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
3331, 32syl 17 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  M )
3426, 30, 333eqtr3rd 2665 . . . . . 6  |-  ( ph  ->  M  =  N )
3534oveq2d 6666 . . . . 5  |-  ( ph  ->  ( 1 ... M
)  =  ( 1 ... N ) )
36 f1oeq2 6128 . . . . 5  |-  ( ( 1 ... M )  =  ( 1 ... N )  ->  (
( `' f  o.  K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M )  <-> 
( `' f  o.  K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) ) )
3735, 36syl 17 . . . 4  |-  ( ph  ->  ( ( `' f  o.  K ) : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
)  <->  ( `' f  o.  K ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... M
) ) )
3818, 37mpbird 247 . . 3  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
39 elfznn 12370 . . . . . 6  |-  ( m  e.  ( 1 ... M )  ->  m  e.  NN )
4039adantl 482 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  m  e.  NN )
41 f1of 6137 . . . . . . . 8  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  f :
( 1 ... M
) --> A )
4213, 41syl 17 . . . . . . 7  |-  ( ph  ->  f : ( 1 ... M ) --> A )
4342ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  (
f `  m )  e.  A )
44 prodmo.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
4544ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
4645adantr 481 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
47 nfcsb1v 3549 . . . . . . . 8  |-  F/_ k [_ ( f `  m
)  /  k ]_ B
4847nfel1 2779 . . . . . . 7  |-  F/ k
[_ ( f `  m )  /  k ]_ B  e.  CC
49 csbeq1a 3542 . . . . . . . 8  |-  ( k  =  ( f `  m )  ->  B  =  [_ ( f `  m )  /  k ]_ B )
5049eleq1d 2686 . . . . . . 7  |-  ( k  =  ( f `  m )  ->  ( B  e.  CC  <->  [_ ( f `
 m )  / 
k ]_ B  e.  CC ) )
5148, 50rspc 3303 . . . . . 6  |-  ( ( f `  m )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( f `  m
)  /  k ]_ B  e.  CC )
)
5243, 46, 51sylc 65 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  [_ (
f `  m )  /  k ]_ B  e.  CC )
53 fveq2 6191 . . . . . . 7  |-  ( j  =  m  ->  (
f `  j )  =  ( f `  m ) )
5453csbeq1d 3540 . . . . . 6  |-  ( j  =  m  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( f `  m )  /  k ]_ B )
55 prodmo.3 . . . . . 6  |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
)  /  k ]_ B )
5654, 55fvmptg 6280 . . . . 5  |-  ( ( m  e.  NN  /\  [_ ( f `  m
)  /  k ]_ B  e.  CC )  ->  ( G `  m
)  =  [_ (
f `  m )  /  k ]_ B
)
5740, 52, 56syl2anc 693 . . . 4  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  ( G `  m )  =  [_ ( f `  m )  /  k ]_ B )
5857, 52eqeltrd 2701 . . 3  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  ( G `  m )  e.  CC )
59 f1oeq2 6128 . . . . . . . . . . . 12  |-  ( ( 1 ... M )  =  ( 1 ... N )  ->  ( K : ( 1 ... M ) -1-1-onto-> A  <->  K : ( 1 ... N ) -1-1-onto-> A ) )
6035, 59syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( K : ( 1 ... M ) -1-1-onto-> A  <-> 
K : ( 1 ... N ) -1-1-onto-> A ) )
6116, 60mpbird 247 . . . . . . . . . 10  |-  ( ph  ->  K : ( 1 ... M ) -1-1-onto-> A )
62 f1of 6137 . . . . . . . . . 10  |-  ( K : ( 1 ... M ) -1-1-onto-> A  ->  K :
( 1 ... M
) --> A )
6361, 62syl 17 . . . . . . . . 9  |-  ( ph  ->  K : ( 1 ... M ) --> A )
64 fvco3 6275 . . . . . . . . 9  |-  ( ( K : ( 1 ... M ) --> A  /\  i  e.  ( 1 ... M ) )  ->  ( ( `' f  o.  K
) `  i )  =  ( `' f `
 ( K `  i ) ) )
6563, 64sylan 488 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  =  ( `' f `  ( K `
 i ) ) )
6665fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( f `
 ( `' f `
 ( K `  i ) ) ) )
6713adantr 481 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  f : ( 1 ... M ) -1-1-onto-> A )
6863ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( K `  i )  e.  A )
69 f1ocnvfv2 6533 . . . . . . . 8  |-  ( ( f : ( 1 ... M ) -1-1-onto-> A  /\  ( K `  i )  e.  A )  -> 
( f `  ( `' f `  ( K `  i )
) )  =  ( K `  i ) )
7067, 68, 69syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( `' f `  ( K `  i ) ) )  =  ( K `  i ) )
7166, 70eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( K `
 i ) )
7271csbeq1d 3540 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B  =  [_ ( K `
 i )  / 
k ]_ B )
7372fveq2d 6195 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (  _I  `  [_ ( f `
 ( ( `' f  o.  K ) `
 i ) )  /  k ]_ B
)  =  (  _I 
`  [_ ( K `  i )  /  k ]_ B ) )
74 f1of 6137 . . . . . . 7  |-  ( ( `' f  o.  K
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M )  -> 
( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
7538, 74syl 17 . . . . . 6  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
7675ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  e.  ( 1 ... M ) )
77 elfznn 12370 . . . . 5  |-  ( ( ( `' f  o.  K ) `  i
)  e.  ( 1 ... M )  -> 
( ( `' f  o.  K ) `  i )  e.  NN )
78 fveq2 6191 . . . . . . 7  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  -> 
( f `  j
)  =  ( f `
 ( ( `' f  o.  K ) `
 i ) ) )
7978csbeq1d 3540 . . . . . 6  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  ->  [_ ( f `  j
)  /  k ]_ B  =  [_ ( f `
 ( ( `' f  o.  K ) `
 i ) )  /  k ]_ B
)
8079, 55fvmpti 6281 . . . . 5  |-  ( ( ( `' f  o.  K ) `  i
)  e.  NN  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  (  _I 
`  [_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ) )
8176, 77, 803syl 18 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  (  _I 
`  [_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ) )
82 elfznn 12370 . . . . . 6  |-  ( i  e.  ( 1 ... M )  ->  i  e.  NN )
8382adantl 482 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  e.  NN )
84 fveq2 6191 . . . . . . 7  |-  ( j  =  i  ->  ( K `  j )  =  ( K `  i ) )
8584csbeq1d 3540 . . . . . 6  |-  ( j  =  i  ->  [_ ( K `  j )  /  k ]_ B  =  [_ ( K `  i )  /  k ]_ B )
86 prodmolem3.4 . . . . . 6  |-  H  =  ( j  e.  NN  |->  [_ ( K `  j
)  /  k ]_ B )
8785, 86fvmpti 6281 . . . . 5  |-  ( i  e.  NN  ->  ( H `  i )  =  (  _I  `  [_ ( K `  i )  /  k ]_ B
) )
8883, 87syl 17 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  (  _I  `  [_ ( K `  i )  /  k ]_ B
) )
8973, 81, 883eqtr4rd 2667 . . 3  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  ( G `  ( ( `' f  o.  K ) `  i ) ) )
902, 4, 6, 10, 12, 38, 58, 89seqf1o 12842 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  H ) `
 M )  =  (  seq 1 (  x.  ,  G ) `
 M ) )
9134fveq2d 6195 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  H ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
9290, 91eqtr3d 2658 1  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729    _I cid 5023   `'ccnv 5113    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ~~ cen 7952   Fincfn 7955   CCcc 9934   1c1 9937    x. cmul 9941   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118
This theorem is referenced by:  prodmolem2a  14664  prodmo  14666
  Copyright terms: Public domain W3C validator