MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlidm Structured version   Visualization version   Unicode version

Theorem psrlidm 19403
Description: The identity element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s  |-  S  =  ( I mPwSer  R )
psrring.i  |-  ( ph  ->  I  e.  V )
psrring.r  |-  ( ph  ->  R  e.  Ring )
psr1cl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psr1cl.z  |-  .0.  =  ( 0g `  R )
psr1cl.o  |-  .1.  =  ( 1r `  R )
psr1cl.u  |-  U  =  ( x  e.  D  |->  if ( x  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
psr1cl.b  |-  B  =  ( Base `  S
)
psrlidm.t  |-  .x.  =  ( .r `  S )
psrlidm.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
psrlidm  |-  ( ph  ->  ( U  .x.  X
)  =  X )
Distinct variable groups:    x, f,  .0.    f, I, x    x, B    R, f, x    x, D    f, X, x    ph, x    x, V    x,  .x.    x, S   
x,  .1.
Allowed substitution hints:    ph( f)    B( f)    D( f)    S( f)    .x. ( f)    U( x, f)    .1. ( f)    V( f)

Proof of Theorem psrlidm
Dummy variables  y 
z  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4  |-  S  =  ( I mPwSer  R )
2 eqid 2622 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
3 psr1cl.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
4 psr1cl.b . . . 4  |-  B  =  ( Base `  S
)
5 psrlidm.t . . . . 5  |-  .x.  =  ( .r `  S )
6 psrring.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
7 psrring.i . . . . . 6  |-  ( ph  ->  I  e.  V )
8 psr1cl.z . . . . . 6  |-  .0.  =  ( 0g `  R )
9 psr1cl.o . . . . . 6  |-  .1.  =  ( 1r `  R )
10 psr1cl.u . . . . . 6  |-  U  =  ( x  e.  D  |->  if ( x  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
111, 7, 6, 3, 8, 9, 10, 4psr1cl 19402 . . . . 5  |-  ( ph  ->  U  e.  B )
12 psrlidm.x . . . . 5  |-  ( ph  ->  X  e.  B )
131, 4, 5, 6, 11, 12psrmulcl 19388 . . . 4  |-  ( ph  ->  ( U  .x.  X
)  e.  B )
141, 2, 3, 4, 13psrelbas 19379 . . 3  |-  ( ph  ->  ( U  .x.  X
) : D --> ( Base `  R ) )
1514ffnd 6046 . 2  |-  ( ph  ->  ( U  .x.  X
)  Fn  D )
161, 2, 3, 4, 12psrelbas 19379 . . 3  |-  ( ph  ->  X : D --> ( Base `  R ) )
1716ffnd 6046 . 2  |-  ( ph  ->  X  Fn  D )
18 eqid 2622 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
1911adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  U  e.  B )
2012adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  X  e.  B )
21 simpr 477 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  y  e.  D )
221, 4, 18, 5, 3, 19, 20, 21psrmulval 19386 . . 3  |-  ( (
ph  /\  y  e.  D )  ->  (
( U  .x.  X
) `  y )  =  ( R  gsumg  ( z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( U `  z ) ( .r
`  R ) ( X `  ( y  oF  -  z
) ) ) ) ) )
23 fconstmpt 5163 . . . . . . . . . 10  |-  ( I  X.  { 0 } )  =  ( x  e.  I  |->  0 )
243fczpsrbag 19367 . . . . . . . . . . 11  |-  ( I  e.  V  ->  (
x  e.  I  |->  0 )  e.  D )
257, 24syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  I  |->  0 )  e.  D
)
2623, 25syl5eqel 2705 . . . . . . . . 9  |-  ( ph  ->  ( I  X.  {
0 } )  e.  D )
2726adantr 481 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  (
I  X.  { 0 } )  e.  D
)
283psrbagf 19365 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  y  e.  D )  ->  y : I --> NN0 )
297, 28sylan 488 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  D )  ->  y : I --> NN0 )
3029ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  D )  /\  x  e.  I )  ->  (
y `  x )  e.  NN0 )
3130nn0ge0d 11354 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  x  e.  I )  ->  0  <_  ( y `  x
) )
3231ralrimiva 2966 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  A. x  e.  I  0  <_  ( y `  x ) )
33 0nn0 11307 . . . . . . . . . . . 12  |-  0  e.  NN0
3433fconst6 6095 . . . . . . . . . . 11  |-  ( I  X.  { 0 } ) : I --> NN0
35 ffn 6045 . . . . . . . . . . 11  |-  ( ( I  X.  { 0 } ) : I --> NN0  ->  ( I  X.  { 0 } )  Fn  I )
3634, 35mp1i 13 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  D )  ->  (
I  X.  { 0 } )  Fn  I
)
3729ffnd 6046 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  D )  ->  y  Fn  I )
387adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  D )  ->  I  e.  V )
39 inidm 3822 . . . . . . . . . 10  |-  ( I  i^i  I )  =  I
4033a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  D )  ->  0  e.  NN0 )
41 fvconst2g 6467 . . . . . . . . . . 11  |-  ( ( 0  e.  NN0  /\  x  e.  I )  ->  ( ( I  X.  { 0 } ) `
 x )  =  0 )
4240, 41sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  x  e.  I )  ->  (
( I  X.  {
0 } ) `  x )  =  0 )
43 eqidd 2623 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  x  e.  I )  ->  (
y `  x )  =  ( y `  x ) )
4436, 37, 38, 38, 39, 42, 43ofrfval 6905 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  (
( I  X.  {
0 } )  oR  <_  y  <->  A. x  e.  I  0  <_  ( y `  x ) ) )
4532, 44mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  (
I  X.  { 0 } )  oR  <_  y )
46 breq1 4656 . . . . . . . . 9  |-  ( g  =  ( I  X.  { 0 } )  ->  ( g  oR  <_  y  <->  ( I  X.  { 0 } )  oR  <_  y
) )
4746elrab 3363 . . . . . . . 8  |-  ( ( I  X.  { 0 } )  e.  {
g  e.  D  | 
g  oR  <_ 
y }  <->  ( (
I  X.  { 0 } )  e.  D  /\  ( I  X.  {
0 } )  oR  <_  y )
)
4827, 45, 47sylanbrc 698 . . . . . . 7  |-  ( (
ph  /\  y  e.  D )  ->  (
I  X.  { 0 } )  e.  {
g  e.  D  | 
g  oR  <_ 
y } )
4948snssd 4340 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  { ( I  X.  { 0 } ) }  C_  { g  e.  D  | 
g  oR  <_ 
y } )
5049resmptd 5452 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) )  |`  { ( I  X.  { 0 } ) } )  =  ( z  e. 
{ ( I  X.  { 0 } ) }  |->  ( ( U `
 z ) ( .r `  R ) ( X `  (
y  oF  -  z ) ) ) ) )
5150oveq2d 6666 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) )  |`  { ( I  X.  { 0 } ) } ) )  =  ( R 
gsumg  ( z  e.  {
( I  X.  {
0 } ) } 
|->  ( ( U `  z ) ( .r
`  R ) ( X `  ( y  oF  -  z
) ) ) ) ) )
52 ringcmn 18581 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. CMnd
)
536, 52syl 17 . . . . . 6  |-  ( ph  ->  R  e. CMnd )
5453adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  R  e. CMnd )
55 ovex 6678 . . . . . . 7  |-  ( NN0 
^m  I )  e. 
_V
563, 55rab2ex 4816 . . . . . 6  |-  { g  e.  D  |  g  oR  <_  y }  e.  _V
5756a1i 11 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  { g  e.  D  |  g  oR  <_  y }  e.  _V )
586ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  R  e.  Ring )
59 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z  e.  { g  e.  D  |  g  oR  <_  y } )
60 breq1 4656 . . . . . . . . . . 11  |-  ( g  =  z  ->  (
g  oR  <_ 
y  <->  z  oR  <_  y ) )
6160elrab 3363 . . . . . . . . . 10  |-  ( z  e.  { g  e.  D  |  g  oR  <_  y }  <->  ( z  e.  D  /\  z  oR  <_  y
) )
6259, 61sylib 208 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( z  e.  D  /\  z  oR 
<_  y ) )
6362simpld 475 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z  e.  D )
641, 2, 3, 4, 19psrelbas 19379 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  U : D --> ( Base `  R
) )
6564ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  D )  ->  ( U `  z )  e.  ( Base `  R
) )
6663, 65syldan 487 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( U `  z
)  e.  ( Base `  R ) )
6716ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  X : D --> ( Base `  R ) )
687ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  I  e.  V )
6921adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
y  e.  D )
703psrbagf 19365 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  z  e.  D )  ->  z : I --> NN0 )
7168, 63, 70syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z : I --> NN0 )
7262simprd 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z  oR  <_ 
y )
733psrbagcon 19371 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( y  e.  D  /\  z : I --> NN0  /\  z  oR  <_  y
) )  ->  (
( y  oF  -  z )  e.  D  /\  ( y  oF  -  z
)  oR  <_ 
y ) )
7468, 69, 71, 72, 73syl13anc 1328 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( ( y  oF  -  z )  e.  D  /\  (
y  oF  -  z )  oR  <_  y ) )
7574simpld 475 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( y  oF  -  z )  e.  D )
7667, 75ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( X `  (
y  oF  -  z ) )  e.  ( Base `  R
) )
772, 18ringcl 18561 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( U `  z )  e.  ( Base `  R
)  /\  ( X `  ( y  oF  -  z ) )  e.  ( Base `  R
) )  ->  (
( U `  z
) ( .r `  R ) ( X `
 ( y  oF  -  z ) ) )  e.  (
Base `  R )
)
7858, 66, 76, 77syl3anc 1326 . . . . . 6  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( ( U `  z ) ( .r
`  R ) ( X `  ( y  oF  -  z
) ) )  e.  ( Base `  R
) )
79 eqid 2622 . . . . . 6  |-  ( z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( U `  z ) ( .r
`  R ) ( X `  ( y  oF  -  z
) ) ) )  =  ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) )
8078, 79fmptd 6385 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( U `
 z ) ( .r `  R ) ( X `  (
y  oF  -  z ) ) ) ) : { g  e.  D  |  g  oR  <_  y }
--> ( Base `  R
) )
81 eldifi 3732 . . . . . . . . . . . 12  |-  ( z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } )  -> 
z  e.  { g  e.  D  |  g  oR  <_  y } )
8281, 62sylan2 491 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  -> 
( z  e.  D  /\  z  oR 
<_  y ) )
8382simpld 475 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  -> 
z  e.  D )
84 eqeq1 2626 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  =  ( I  X.  { 0 } )  <->  z  =  ( I  X.  { 0 } ) ) )
8584ifbid 4108 . . . . . . . . . . 11  |-  ( x  =  z  ->  if ( x  =  (
I  X.  { 0 } ) ,  .1.  ,  .0.  )  =  if ( z  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )
86 fvex 6201 . . . . . . . . . . . . 13  |-  ( 1r
`  R )  e. 
_V
879, 86eqeltri 2697 . . . . . . . . . . . 12  |-  .1.  e.  _V
88 fvex 6201 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  e. 
_V
898, 88eqeltri 2697 . . . . . . . . . . . 12  |-  .0.  e.  _V
9087, 89ifex 4156 . . . . . . . . . . 11  |-  if ( z  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  )  e.  _V
9185, 10, 90fvmpt 6282 . . . . . . . . . 10  |-  ( z  e.  D  ->  ( U `  z )  =  if ( z  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
9283, 91syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  -> 
( U `  z
)  =  if ( z  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )
93 eldifn 3733 . . . . . . . . . . . 12  |-  ( z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } )  ->  -.  z  e.  { ( I  X.  { 0 } ) } )
9493adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  ->  -.  z  e.  { ( I  X.  { 0 } ) } )
95 velsn 4193 . . . . . . . . . . 11  |-  ( z  e.  { ( I  X.  { 0 } ) }  <->  z  =  ( I  X.  { 0 } ) )
9694, 95sylnib 318 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  ->  -.  z  =  (
I  X.  { 0 } ) )
9796iffalsed 4097 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  ->  if ( z  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  )  =  .0.  )
9892, 97eqtrd 2656 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  -> 
( U `  z
)  =  .0.  )
9998oveq1d 6665 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  -> 
( ( U `  z ) ( .r
`  R ) ( X `  ( y  oF  -  z
) ) )  =  (  .0.  ( .r
`  R ) ( X `  ( y  oF  -  z
) ) ) )
1006ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  ->  R  e.  Ring )
10181, 76sylan2 491 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  -> 
( X `  (
y  oF  -  z ) )  e.  ( Base `  R
) )
1022, 18, 8ringlz 18587 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X `  ( y  oF  -  z
) )  e.  (
Base `  R )
)  ->  (  .0.  ( .r `  R ) ( X `  (
y  oF  -  z ) ) )  =  .0.  )
103100, 101, 102syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  -> 
(  .0.  ( .r
`  R ) ( X `  ( y  oF  -  z
) ) )  =  .0.  )
10499, 103eqtrd 2656 . . . . . 6  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { ( I  X.  { 0 } ) } ) )  -> 
( ( U `  z ) ( .r
`  R ) ( X `  ( y  oF  -  z
) ) )  =  .0.  )
105104, 57suppss2 7329 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) ) supp  .0.  )  C_ 
{ ( I  X.  { 0 } ) } )
1063, 55rabex2 4815 . . . . . . . 8  |-  D  e. 
_V
107106mptrabex 6488 . . . . . . 7  |-  ( z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( U `  z ) ( .r
`  R ) ( X `  ( y  oF  -  z
) ) ) )  e.  _V
108107a1i 11 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  (
z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( U `
 z ) ( .r `  R ) ( X `  (
y  oF  -  z ) ) ) )  e.  _V )
109 funmpt 5926 . . . . . . 7  |-  Fun  (
z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( U `
 z ) ( .r `  R ) ( X `  (
y  oF  -  z ) ) ) )
110109a1i 11 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  Fun  ( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) ) )
11189a1i 11 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  .0.  e.  _V )
112 snfi 8038 . . . . . . 7  |-  { ( I  X.  { 0 } ) }  e.  Fin
113112a1i 11 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  { ( I  X.  { 0 } ) }  e.  Fin )
114 suppssfifsupp 8290 . . . . . 6  |-  ( ( ( ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) )  e.  _V  /\ 
Fun  ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) )  /\  .0.  e.  _V )  /\  ( { ( I  X.  { 0 } ) }  e.  Fin  /\  ( ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) ) supp  .0.  )  C_ 
{ ( I  X.  { 0 } ) } ) )  -> 
( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) ) finSupp  .0.  )
115108, 110, 111, 113, 105, 114syl32anc 1334 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( U `
 z ) ( .r `  R ) ( X `  (
y  oF  -  z ) ) ) ) finSupp  .0.  )
1162, 8, 54, 57, 80, 105, 115gsumres 18314 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) )  |`  { ( I  X.  { 0 } ) } ) )  =  ( R 
gsumg  ( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) ) ) )
1176adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  R  e.  Ring )
118 ringmnd 18556 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
119117, 118syl 17 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  R  e.  Mnd )
120 iftrue 4092 . . . . . . . . . 10  |-  ( x  =  ( I  X.  { 0 } )  ->  if ( x  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  )  =  .1.  )
121120, 10, 87fvmpt 6282 . . . . . . . . 9  |-  ( ( I  X.  { 0 } )  e.  D  ->  ( U `  (
I  X.  { 0 } ) )  =  .1.  )
12227, 121syl 17 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  ( U `  ( I  X.  { 0 } ) )  =  .1.  )
123 nn0cn 11302 . . . . . . . . . . . 12  |-  ( z  e.  NN0  ->  z  e.  CC )
124123subid1d 10381 . . . . . . . . . . 11  |-  ( z  e.  NN0  ->  ( z  -  0 )  =  z )
125124adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  NN0 )  ->  (
z  -  0 )  =  z )
12638, 29, 40, 125caofid0r 6926 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  (
y  oF  -  ( I  X.  { 0 } ) )  =  y )
127126fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  ( X `  ( y  oF  -  (
I  X.  { 0 } ) ) )  =  ( X `  y ) )
128122, 127oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  y  e.  D )  ->  (
( U `  (
I  X.  { 0 } ) ) ( .r `  R ) ( X `  (
y  oF  -  ( I  X.  { 0 } ) ) ) )  =  (  .1.  ( .r `  R
) ( X `  y ) ) )
12916ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  ( X `  y )  e.  ( Base `  R
) )
1302, 18, 9ringlidm 18571 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X `  y )  e.  ( Base `  R
) )  ->  (  .1.  ( .r `  R
) ( X `  y ) )  =  ( X `  y
) )
131117, 129, 130syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  y  e.  D )  ->  (  .1.  ( .r `  R
) ( X `  y ) )  =  ( X `  y
) )
132128, 131eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  (
( U `  (
I  X.  { 0 } ) ) ( .r `  R ) ( X `  (
y  oF  -  ( I  X.  { 0 } ) ) ) )  =  ( X `
 y ) )
133132, 129eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( U `  (
I  X.  { 0 } ) ) ( .r `  R ) ( X `  (
y  oF  -  ( I  X.  { 0 } ) ) ) )  e.  ( Base `  R ) )
134 fveq2 6191 . . . . . . 7  |-  ( z  =  ( I  X.  { 0 } )  ->  ( U `  z )  =  ( U `  ( I  X.  { 0 } ) ) )
135 oveq2 6658 . . . . . . . 8  |-  ( z  =  ( I  X.  { 0 } )  ->  ( y  oF  -  z )  =  ( y  oF  -  ( I  X.  { 0 } ) ) )
136135fveq2d 6195 . . . . . . 7  |-  ( z  =  ( I  X.  { 0 } )  ->  ( X `  ( y  oF  -  z ) )  =  ( X `  ( y  oF  -  ( I  X.  { 0 } ) ) ) )
137134, 136oveq12d 6668 . . . . . 6  |-  ( z  =  ( I  X.  { 0 } )  ->  ( ( U `
 z ) ( .r `  R ) ( X `  (
y  oF  -  z ) ) )  =  ( ( U `
 ( I  X.  { 0 } ) ) ( .r `  R ) ( X `
 ( y  oF  -  ( I  X.  { 0 } ) ) ) ) )
1382, 137gsumsn 18354 . . . . 5  |-  ( ( R  e.  Mnd  /\  ( I  X.  { 0 } )  e.  D  /\  ( ( U `  ( I  X.  { 0 } ) ) ( .r `  R ) ( X `  (
y  oF  -  ( I  X.  { 0 } ) ) ) )  e.  ( Base `  R ) )  -> 
( R  gsumg  ( z  e.  {
( I  X.  {
0 } ) } 
|->  ( ( U `  z ) ( .r
`  R ) ( X `  ( y  oF  -  z
) ) ) ) )  =  ( ( U `  ( I  X.  { 0 } ) ) ( .r
`  R ) ( X `  ( y  oF  -  (
I  X.  { 0 } ) ) ) ) )
139119, 27, 133, 138syl3anc 1326 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( z  e.  {
( I  X.  {
0 } ) } 
|->  ( ( U `  z ) ( .r
`  R ) ( X `  ( y  oF  -  z
) ) ) ) )  =  ( ( U `  ( I  X.  { 0 } ) ) ( .r
`  R ) ( X `  ( y  oF  -  (
I  X.  { 0 } ) ) ) ) )
14051, 116, 1393eqtr3d 2664 . . 3  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( U `  z ) ( .r `  R
) ( X `  ( y  oF  -  z ) ) ) ) )  =  ( ( U `  ( I  X.  { 0 } ) ) ( .r `  R ) ( X `  (
y  oF  -  ( I  X.  { 0 } ) ) ) ) )
14122, 140, 1323eqtrd 2660 . 2  |-  ( (
ph  /\  y  e.  D )  ->  (
( U  .x.  X
) `  y )  =  ( X `  y ) )
14215, 17, 141eqfnfvd 6314 1  |-  ( ph  ->  ( U  .x.  X
)  =  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    oRcofr 6896   supp csupp 7295    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275   0cc0 9936    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   Basecbs 15857   .rcmulr 15942   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  CMndccmn 18193   1rcur 18501   Ringcrg 18547   mPwSer cmps 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-psr 19356
This theorem is referenced by:  psrring  19411  psr1  19412
  Copyright terms: Public domain W3C validator