MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwm1geoser Structured version   Visualization version   Unicode version

Theorem pwm1geoser 14600
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series  1  +  A ^ 1  +  A ^ 2  +...  +  A ^ ( N  - 
1 ). (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
pwm1geoser.1  |-  ( ph  ->  A  e.  CC )
pwm1geoser.3  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
pwm1geoser  |-  ( ph  ->  ( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) )
Distinct variable groups:    A, k    k, N    ph, k

Proof of Theorem pwm1geoser
StepHypRef Expression
1 1m1e0 11089 . . . 4  |-  ( 1  -  1 )  =  0
2 pwm1geoser.3 . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
32nn0zd 11480 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
4 1exp 12889 . . . . . 6  |-  ( N  e.  ZZ  ->  (
1 ^ N )  =  1 )
53, 4syl 17 . . . . 5  |-  ( ph  ->  ( 1 ^ N
)  =  1 )
65oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( 1 ^ N )  -  1 )  =  ( 1  -  1 ) )
7 fzfid 12772 . . . . . 6  |-  ( ph  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
8 1cnd 10056 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  1  e.  CC )
9 elfznn0 12433 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
109adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  NN0 )
118, 10expcld 13008 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ^ k )  e.  CC )
127, 11fsumcl 14464 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( 1 ^ k
)  e.  CC )
1312mul02d 10234 . . . 4  |-  ( ph  ->  ( 0  x.  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( 1 ^ k ) )  =  0 )
141, 6, 133eqtr4a 2682 . . 3  |-  ( ph  ->  ( ( 1 ^ N )  -  1 )  =  ( 0  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( 1 ^ k
) ) )
15 oveq1 6657 . . . . 5  |-  ( A  =  1  ->  ( A ^ N )  =  ( 1 ^ N
) )
1615oveq1d 6665 . . . 4  |-  ( A  =  1  ->  (
( A ^ N
)  -  1 )  =  ( ( 1 ^ N )  - 
1 ) )
17 oveq1 6657 . . . . . 6  |-  ( A  =  1  ->  ( A  -  1 )  =  ( 1  -  1 ) )
1817, 1syl6eq 2672 . . . . 5  |-  ( A  =  1  ->  ( A  -  1 )  =  0 )
19 oveq1 6657 . . . . . . . 8  |-  ( A  =  1  ->  ( A ^ k )  =  ( 1 ^ k
) )
2019adantr 481 . . . . . . 7  |-  ( ( A  =  1  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( A ^
k )  =  ( 1 ^ k ) )
2120ralrimiva 2966 . . . . . 6  |-  ( A  =  1  ->  A. k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k )  =  ( 1 ^ k ) )
2221sumeq2d 14432 . . . . 5  |-  ( A  =  1  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( 1 ^ k ) )
2318, 22oveq12d 6668 . . . 4  |-  ( A  =  1  ->  (
( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k ) )  =  ( 0  x.  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( 1 ^ k ) ) )
2416, 23eqeq12d 2637 . . 3  |-  ( A  =  1  ->  (
( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) )  <->  ( (
1 ^ N )  -  1 )  =  ( 0  x.  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( 1 ^ k ) ) ) )
2514, 24syl5ibr 236 . 2  |-  ( A  =  1  ->  ( ph  ->  ( ( A ^ N )  - 
1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k ) ) ) )
26 pwm1geoser.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
2726adantl 482 . . . . 5  |-  ( ( -.  A  =  1  /\  ph )  ->  A  e.  CC )
28 neqne 2802 . . . . . 6  |-  ( -.  A  =  1  ->  A  =/=  1 )
2928adantr 481 . . . . 5  |-  ( ( -.  A  =  1  /\  ph )  ->  A  =/=  1 )
302adantl 482 . . . . 5  |-  ( ( -.  A  =  1  /\  ph )  ->  N  e.  NN0 )
3127, 29, 30geoser 14599 . . . 4  |-  ( ( -.  A  =  1  /\  ph )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  =  ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
32 eqcom 2629 . . . . 5  |-  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  =  ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) )  <->  ( (
1  -  ( A ^ N ) )  /  ( 1  -  A ) )  = 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) )
33 1cnd 10056 . . . . . . . 8  |-  ( ( -.  A  =  1  /\  ph )  -> 
1  e.  CC )
3426, 2expcld 13008 . . . . . . . . 9  |-  ( ph  ->  ( A ^ N
)  e.  CC )
3534adantl 482 . . . . . . . 8  |-  ( ( -.  A  =  1  /\  ph )  -> 
( A ^ N
)  e.  CC )
36 nesym 2850 . . . . . . . . . 10  |-  ( 1  =/=  A  <->  -.  A  =  1 )
3736biimpri 218 . . . . . . . . 9  |-  ( -.  A  =  1  -> 
1  =/=  A )
3837adantr 481 . . . . . . . 8  |-  ( ( -.  A  =  1  /\  ph )  -> 
1  =/=  A )
3933, 35, 33, 27, 38div2subd 10851 . . . . . . 7  |-  ( ( -.  A  =  1  /\  ph )  -> 
( ( 1  -  ( A ^ N
) )  /  (
1  -  A ) )  =  ( ( ( A ^ N
)  -  1 )  /  ( A  - 
1 ) ) )
4039eqeq1d 2624 . . . . . 6  |-  ( ( -.  A  =  1  /\  ph )  -> 
( ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  <-> 
( ( ( A ^ N )  - 
1 )  /  ( A  -  1 ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k ) ) )
41 peano2cnm 10347 . . . . . . . . 9  |-  ( ( A ^ N )  e.  CC  ->  (
( A ^ N
)  -  1 )  e.  CC )
4234, 41syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( A ^ N )  -  1 )  e.  CC )
4342adantl 482 . . . . . . 7  |-  ( ( -.  A  =  1  /\  ph )  -> 
( ( A ^ N )  -  1 )  e.  CC )
44 fzfid 12772 . . . . . . . 8  |-  ( ( -.  A  =  1  /\  ph )  -> 
( 0 ... ( N  -  1 ) )  e.  Fin )
4527adantr 481 . . . . . . . . 9  |-  ( ( ( -.  A  =  1  /\  ph )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  A  e.  CC )
469adantl 482 . . . . . . . . 9  |-  ( ( ( -.  A  =  1  /\  ph )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  k  e.  NN0 )
4745, 46expcld 13008 . . . . . . . 8  |-  ( ( ( -.  A  =  1  /\  ph )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( A ^
k )  e.  CC )
4844, 47fsumcl 14464 . . . . . . 7  |-  ( ( -.  A  =  1  /\  ph )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  e.  CC )
49 peano2cnm 10347 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  ( A  -  1 )  e.  CC )
5049adantr 481 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -.  A  =  1
)  ->  ( A  -  1 )  e.  CC )
51 simpl 473 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  -.  A  =  1
)  ->  A  e.  CC )
52 1cnd 10056 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  -.  A  =  1
)  ->  1  e.  CC )
5328adantl 482 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  -.  A  =  1
)  ->  A  =/=  1 )
5451, 52, 53subne0d 10401 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -.  A  =  1
)  ->  ( A  -  1 )  =/=  0 )
5550, 54jca 554 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -.  A  =  1
)  ->  ( ( A  -  1 )  e.  CC  /\  ( A  -  1 )  =/=  0 ) )
5655ex 450 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( -.  A  =  1  ->  ( ( A  - 
1 )  e.  CC  /\  ( A  -  1 )  =/=  0 ) ) )
5726, 56syl 17 . . . . . . . 8  |-  ( ph  ->  ( -.  A  =  1  ->  ( ( A  -  1 )  e.  CC  /\  ( A  -  1 )  =/=  0 ) ) )
5857impcom 446 . . . . . . 7  |-  ( ( -.  A  =  1  /\  ph )  -> 
( ( A  - 
1 )  e.  CC  /\  ( A  -  1 )  =/=  0 ) )
59 divmul2 10689 . . . . . . 7  |-  ( ( ( ( A ^ N )  -  1 )  e.  CC  /\  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  e.  CC  /\  (
( A  -  1 )  e.  CC  /\  ( A  -  1
)  =/=  0 ) )  ->  ( (
( ( A ^ N )  -  1 )  /  ( A  -  1 ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  <->  ( ( A ^ N )  - 
1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k ) ) ) )
6043, 48, 58, 59syl3anc 1326 . . . . . 6  |-  ( ( -.  A  =  1  /\  ph )  -> 
( ( ( ( A ^ N )  -  1 )  / 
( A  -  1 ) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  <-> 
( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) ) )
6140, 60bitrd 268 . . . . 5  |-  ( ( -.  A  =  1  /\  ph )  -> 
( ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  <-> 
( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) ) )
6232, 61syl5bb 272 . . . 4  |-  ( ( -.  A  =  1  /\  ph )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ N ) )  /  ( 1  -  A ) )  <->  ( ( A ^ N )  - 
1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k ) ) ) )
6331, 62mpbid 222 . . 3  |-  ( ( -.  A  =  1  /\  ph )  -> 
( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) )
6463ex 450 . 2  |-  ( -.  A  =  1  -> 
( ph  ->  ( ( A ^ N )  -  1 )  =  ( ( A  - 
1 )  x.  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k ) ) ) )
6525, 64pm2.61i 176 1  |-  ( ph  ->  ( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    - cmin 10266    / cdiv 10684   NN0cn0 11292   ZZcz 11377   ...cfz 12326   ^cexp 12860   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  lighneallem3  41524
  Copyright terms: Public domain W3C validator