Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0resrnlem Structured version   Visualization version   Unicode version

Theorem sge0resrnlem 40620
Description: The sum of nonnegative extended reals restricted to the range of a function is less or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0resrnlem.a  |-  ( ph  ->  A  e.  V )
sge0resrnlem.f  |-  ( ph  ->  F : B --> ( 0 [,] +oo ) )
sge0resrnlem.g  |-  ( ph  ->  G : A --> B )
sge0resrnlem.x  |-  ( ph  ->  X  e.  ~P A
)
sge0resrnlem.f1o  |-  ( ph  ->  ( G  |`  X ) : X -1-1-onto-> ran  G )
Assertion
Ref Expression
sge0resrnlem  |-  ( ph  ->  (Σ^ `  ( F  |`  ran  G
) )  <_  (Σ^ `  ( F  o.  G )
) )

Proof of Theorem sge0resrnlem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4  |-  F/ y
ph
2 nfv 1843 . . . 4  |-  F/ x ph
3 fveq2 6191 . . . 4  |-  ( y  =  ( G `  x )  ->  ( F `  y )  =  ( F `  ( G `  x ) ) )
4 sge0resrnlem.x . . . 4  |-  ( ph  ->  X  e.  ~P A
)
5 sge0resrnlem.f1o . . . 4  |-  ( ph  ->  ( G  |`  X ) : X -1-1-onto-> ran  G )
6 fvres 6207 . . . . 5  |-  ( x  e.  X  ->  (
( G  |`  X ) `
 x )  =  ( G `  x
) )
76adantl 482 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( G  |`  X ) `
 x )  =  ( G `  x
) )
8 sge0resrnlem.f . . . . . 6  |-  ( ph  ->  F : B --> ( 0 [,] +oo ) )
98adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  ran  G )  ->  F : B --> ( 0 [,] +oo ) )
10 sge0resrnlem.g . . . . . . . 8  |-  ( ph  ->  G : A --> B )
11 frn 6053 . . . . . . . 8  |-  ( G : A --> B  ->  ran  G  C_  B )
1210, 11syl 17 . . . . . . 7  |-  ( ph  ->  ran  G  C_  B
)
1312adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  ran  G )  ->  ran  G 
C_  B )
14 simpr 477 . . . . . 6  |-  ( (
ph  /\  y  e.  ran  G )  ->  y  e.  ran  G )
1513, 14sseldd 3604 . . . . 5  |-  ( (
ph  /\  y  e.  ran  G )  ->  y  e.  B )
169, 15ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  y  e.  ran  G )  ->  ( F `  y )  e.  ( 0 [,] +oo ) )
171, 2, 3, 4, 5, 7, 16sge0f1o 40599 . . 3  |-  ( ph  ->  (Σ^ `  ( y  e.  ran  G 
|->  ( F `  y
) ) )  =  (Σ^ `  ( x  e.  X  |->  ( F `  ( G `  x )
) ) ) )
188, 12feqresmpt 6250 . . . 4  |-  ( ph  ->  ( F  |`  ran  G
)  =  ( y  e.  ran  G  |->  ( F `  y ) ) )
1918fveq2d 6195 . . 3  |-  ( ph  ->  (Σ^ `  ( F  |`  ran  G
) )  =  (Σ^ `  (
y  e.  ran  G  |->  ( F `  y
) ) ) )
20 fcompt 6400 . . . . . . 7  |-  ( ( F : B --> ( 0 [,] +oo )  /\  G : A --> B )  ->  ( F  o.  G )  =  ( x  e.  A  |->  ( F `  ( G `
 x ) ) ) )
218, 10, 20syl2anc 693 . . . . . 6  |-  ( ph  ->  ( F  o.  G
)  =  ( x  e.  A  |->  ( F `
 ( G `  x ) ) ) )
2221reseq1d 5395 . . . . 5  |-  ( ph  ->  ( ( F  o.  G )  |`  X )  =  ( ( x  e.  A  |->  ( F `
 ( G `  x ) ) )  |`  X ) )
234elpwid 4170 . . . . . 6  |-  ( ph  ->  X  C_  A )
2423resmptd 5452 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  ( G `  x ) ) )  |`  X )  =  ( x  e.  X  |->  ( F `  ( G `  x ) ) ) )
2522, 24eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( F  o.  G )  |`  X )  =  ( x  e.  X  |->  ( F `  ( G `  x ) ) ) )
2625fveq2d 6195 . . 3  |-  ( ph  ->  (Σ^ `  ( ( F  o.  G )  |`  X ) )  =  (Σ^ `  ( x  e.  X  |->  ( F `  ( G `  x )
) ) ) )
2717, 19, 263eqtr4d 2666 . 2  |-  ( ph  ->  (Σ^ `  ( F  |`  ran  G
) )  =  (Σ^ `  (
( F  o.  G
)  |`  X ) ) )
28 sge0resrnlem.a . . 3  |-  ( ph  ->  A  e.  V )
29 fco 6058 . . . 4  |-  ( ( F : B --> ( 0 [,] +oo )  /\  G : A --> B )  ->  ( F  o.  G ) : A --> ( 0 [,] +oo ) )
308, 10, 29syl2anc 693 . . 3  |-  ( ph  ->  ( F  o.  G
) : A --> ( 0 [,] +oo ) )
3128, 30sge0less 40609 . 2  |-  ( ph  ->  (Σ^ `  ( ( F  o.  G )  |`  X ) )  <_  (Σ^ `  ( F  o.  G
) ) )
3227, 31eqbrtrd 4675 1  |-  ( ph  ->  (Σ^ `  ( F  |`  ran  G
) )  <_  (Σ^ `  ( F  o.  G )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   +oocpnf 10071    <_ cle 10075   [,]cicc 12178  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0resrn  40621
  Copyright terms: Public domain W3C validator