Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvtp Structured version   Visualization version   Unicode version

Theorem signsvtp 30660
Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsv.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
signsv.t  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
signsv.v  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
signsvf.e  |-  ( ph  ->  E  e.  (Word  RR  \  { (/) } ) )
signsvf.0  |-  ( ph  ->  ( E `  0
)  =/=  0 )
signsvf.f  |-  ( ph  ->  F  =  ( E ++ 
<" A "> ) )
signsvf.a  |-  ( ph  ->  A  e.  RR )
signsvf.n  |-  N  =  ( # `  E
)
signsvt.b  |-  B  =  ( ( T `  E ) `  ( N  -  1 ) )
Assertion
Ref Expression
signsvtp  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( V `  F )  =  ( V `  E ) )
Distinct variable groups:    a, b,  .+^    f, i, n, F    f, W, i, n    f, a, i, j, b, n, A    E, a, b, f, i, j, n    T, a, b, f, j, n
Allowed substitution hints:    ph( f, i, j, n, a, b)    B( f, i, j, n, a, b)    .+^ ( f, i, j, n)    T( i)    F( j, a, b)    N( f, i, j, n, a, b)    V( f, i, j, n, a, b)    W( j, a, b)

Proof of Theorem signsvtp
StepHypRef Expression
1 signsvf.f . . . . 5  |-  ( ph  ->  F  =  ( E ++ 
<" A "> ) )
21fveq2d 6195 . . . 4  |-  ( ph  ->  ( V `  F
)  =  ( V `
 ( E ++  <" A "> )
) )
3 signsvf.e . . . . 5  |-  ( ph  ->  E  e.  (Word  RR  \  { (/) } ) )
4 signsvf.0 . . . . 5  |-  ( ph  ->  ( E `  0
)  =/=  0 )
5 signsvf.a . . . . 5  |-  ( ph  ->  A  e.  RR )
6 signsv.p . . . . . 6  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
7 signsv.w . . . . . 6  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
8 signsv.t . . . . . 6  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
9 signsv.v . . . . . 6  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
106, 7, 8, 9signsvfn 30659 . . . . 5  |-  ( ( ( E  e.  (Word 
RR  \  { (/) } )  /\  ( E ` 
0 )  =/=  0
)  /\  A  e.  RR )  ->  ( V `
 ( E ++  <" A "> )
)  =  ( ( V `  E )  +  if ( ( ( ( T `  E ) `  (
( # `  E )  -  1 ) )  x.  A )  <  0 ,  1 ,  0 ) ) )
113, 4, 5, 10syl21anc 1325 . . . 4  |-  ( ph  ->  ( V `  ( E ++  <" A "> ) )  =  ( ( V `  E
)  +  if ( ( ( ( T `
 E ) `  ( ( # `  E
)  -  1 ) )  x.  A )  <  0 ,  1 ,  0 ) ) )
122, 11eqtrd 2656 . . 3  |-  ( ph  ->  ( V `  F
)  =  ( ( V `  E )  +  if ( ( ( ( T `  E ) `  (
( # `  E )  -  1 ) )  x.  A )  <  0 ,  1 ,  0 ) ) )
1312adantr 481 . 2  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( V `  F )  =  ( ( V `  E
)  +  if ( ( ( ( T `
 E ) `  ( ( # `  E
)  -  1 ) )  x.  A )  <  0 ,  1 ,  0 ) ) )
14 0red 10041 . . . . 5  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  0  e.  RR )
153adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  E  e.  (Word  RR  \  { (/) } ) )
1615eldifad 3586 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  E  e. Word  RR )
176, 7, 8, 9signstf 30643 . . . . . . . 8  |-  ( E  e. Word  RR  ->  ( T `
 E )  e. Word  RR )
18 wrdf 13310 . . . . . . . 8  |-  ( ( T `  E )  e. Word  RR  ->  ( T `
 E ) : ( 0..^ ( # `  ( T `  E
) ) ) --> RR )
1916, 17, 183syl 18 . . . . . . 7  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( T `  E ) : ( 0..^ ( # `  ( T `  E )
) ) --> RR )
20 eldifsn 4317 . . . . . . . . . . 11  |-  ( E  e.  (Word  RR  \  { (/) } )  <->  ( E  e. Word  RR  /\  E  =/=  (/) ) )
213, 20sylib 208 . . . . . . . . . 10  |-  ( ph  ->  ( E  e. Word  RR  /\  E  =/=  (/) ) )
2221adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( E  e. Word  RR  /\  E  =/=  (/) ) )
23 lennncl 13325 . . . . . . . . 9  |-  ( ( E  e. Word  RR  /\  E  =/=  (/) )  ->  ( # `
 E )  e.  NN )
24 fzo0end 12560 . . . . . . . . 9  |-  ( (
# `  E )  e.  NN  ->  ( ( # `
 E )  - 
1 )  e.  ( 0..^ ( # `  E
) ) )
2522, 23, 243syl 18 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( ( # `
 E )  - 
1 )  e.  ( 0..^ ( # `  E
) ) )
266, 7, 8, 9signstlen 30644 . . . . . . . . . 10  |-  ( E  e. Word  RR  ->  ( # `  ( T `  E
) )  =  (
# `  E )
)
2716, 26syl 17 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( # `  ( T `  E )
)  =  ( # `  E ) )
2827oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( 0..^ ( # `  ( T `  E )
) )  =  ( 0..^ ( # `  E
) ) )
2925, 28eleqtrrd 2704 . . . . . . 7  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( ( # `
 E )  - 
1 )  e.  ( 0..^ ( # `  ( T `  E )
) ) )
3019, 29ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( ( T `  E ) `  ( ( # `  E
)  -  1 ) )  e.  RR )
315adantr 481 . . . . . 6  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  A  e.  RR )
3230, 31remulcld 10070 . . . . 5  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( (
( T `  E
) `  ( ( # `
 E )  - 
1 ) )  x.  A )  e.  RR )
33 simpr 477 . . . . . . 7  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  0  <  ( A  x.  B ) )
34 signsvt.b . . . . . . . . . . 11  |-  B  =  ( ( T `  E ) `  ( N  -  1 ) )
35 signsvf.n . . . . . . . . . . . . 13  |-  N  =  ( # `  E
)
3635oveq1i 6660 . . . . . . . . . . . 12  |-  ( N  -  1 )  =  ( ( # `  E
)  -  1 )
3736fveq2i 6194 . . . . . . . . . . 11  |-  ( ( T `  E ) `
 ( N  - 
1 ) )  =  ( ( T `  E ) `  (
( # `  E )  -  1 ) )
3834, 37eqtri 2644 . . . . . . . . . 10  |-  B  =  ( ( T `  E ) `  (
( # `  E )  -  1 ) )
3938, 30syl5eqel 2705 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  B  e.  RR )
4039recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  B  e.  CC )
4131recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  A  e.  CC )
4240, 41mulcomd 10061 . . . . . . 7  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( B  x.  A )  =  ( A  x.  B ) )
4333, 42breqtrrd 4681 . . . . . 6  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  0  <  ( B  x.  A ) )
4438oveq1i 6660 . . . . . 6  |-  ( B  x.  A )  =  ( ( ( T `
 E ) `  ( ( # `  E
)  -  1 ) )  x.  A )
4543, 44syl6breq 4694 . . . . 5  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  0  <  ( ( ( T `  E ) `  (
( # `  E )  -  1 ) )  x.  A ) )
4614, 32, 45ltnsymd 10186 . . . 4  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  -.  (
( ( T `  E ) `  (
( # `  E )  -  1 ) )  x.  A )  <  0 )
4746iffalsed 4097 . . 3  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  if (
( ( ( T `
 E ) `  ( ( # `  E
)  -  1 ) )  x.  A )  <  0 ,  1 ,  0 )  =  0 )
4847oveq2d 6666 . 2  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( ( V `  E )  +  if ( ( ( ( T `  E
) `  ( ( # `
 E )  - 
1 ) )  x.  A )  <  0 ,  1 ,  0 ) )  =  ( ( V `  E
)  +  0 ) )
496, 7, 8, 9signsvvf 30656 . . . . . 6  |-  V :Word  RR
--> NN0
5049a1i 11 . . . . 5  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  V :Word  RR
--> NN0 )
5150, 16ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( V `  E )  e.  NN0 )
5251nn0cnd 11353 . . 3  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( V `  E )  e.  CC )
5352addid1d 10236 . 2  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( ( V `  E )  +  0 )  =  ( V `  E
) )
5413, 48, 533eqtrd 2660 1  |-  ( (
ph  /\  0  <  ( A  x.  B ) )  ->  ( V `  F )  =  ( V `  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   (/)c0 3915   ifcif 4086   {csn 4177   {cpr 4179   {ctp 4181   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   -ucneg 10267   NNcn 11020   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294  sgncsgn 13826   sum_csu 14416   ndxcnx 15854   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-sgn 13827  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mulg 17541  df-cntz 17750
This theorem is referenced by:  signsvfpn  30662
  Copyright terms: Public domain W3C validator