MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetlem0 Structured version   Visualization version   Unicode version

Theorem smadiadetlem0 20467
Description: Lemma 0 for smadiadet 20476: The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
marep01ma.a  |-  A  =  ( N Mat  R )
marep01ma.b  |-  B  =  ( Base `  A
)
marep01ma.r  |-  R  e. 
CRing
marep01ma.0  |-  .0.  =  ( 0g `  R )
marep01ma.1  |-  .1.  =  ( 1r `  R )
smadiadetlem.p  |-  P  =  ( Base `  ( SymGrp `
 N ) )
smadiadetlem.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
smadiadetlem0  |-  ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N )  ->  ( Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } )  ->  ( G  gsumg  ( n  e.  N  |->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  n ) ) ) )  =  .0.  ) )
Distinct variable groups:    i, j, n, B    i, q, K, j, n    i, L, j, n, q    i, M, j, n    i, N, j, n    P, i, j, n, q    Q, i, j, n, q    R, i, j, n    .1. , i,
j, n    .0. , i,
j, n    n, G
Allowed substitution hints:    A( i, j, n, q)    B( q)    R( q)    .1. ( q)    G( i, j, q)    M( q)    N( q)    .0. ( q)

Proof of Theorem smadiadetlem0
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 smadiadetlem.g . . 3  |-  G  =  (mulGrp `  R )
2 marep01ma.0 . . 3  |-  .0.  =  ( 0g `  R )
3 marep01ma.r . . . 4  |-  R  e. 
CRing
43a1i 11 . . 3  |-  ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N
)  /\  Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } ) )  ->  R  e.  CRing
)
5 marep01ma.a . . . . . . 7  |-  A  =  ( N Mat  R )
6 marep01ma.b . . . . . . 7  |-  B  =  ( Base `  A
)
75, 6matrcl 20218 . . . . . 6  |-  ( M  e.  B  ->  ( N  e.  Fin  /\  R  e.  _V ) )
87simpld 475 . . . . 5  |-  ( M  e.  B  ->  N  e.  Fin )
983ad2ant1 1082 . . . 4  |-  ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N )  ->  N  e.  Fin )
109adantr 481 . . 3  |-  ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N
)  /\  Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } ) )  ->  N  e.  Fin )
11 crngring 18558 . . . . . . 7  |-  ( R  e.  CRing  ->  R  e.  Ring )
123, 11mp1i 13 . . . . . 6  |-  ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N
)  /\  Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } ) )  ->  R  e.  Ring )
13 eldifi 3732 . . . . . . 7  |-  ( Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } )  ->  Q  e.  P )
1413adantl 482 . . . . . 6  |-  ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N
)  /\  Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } ) )  ->  Q  e.  P )
15 marep01ma.1 . . . . . . . . 9  |-  .1.  =  ( 1r `  R )
165, 6, 3, 2, 15marep01ma 20466 . . . . . . . 8  |-  ( M  e.  B  ->  (
i  e.  N , 
j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) )  e.  B
)
17163ad2ant1 1082 . . . . . . 7  |-  ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N )  ->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) )  e.  B )
1817adantr 481 . . . . . 6  |-  ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N
)  /\  Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } ) )  ->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) )  e.  B )
19 smadiadetlem.p . . . . . . 7  |-  P  =  ( Base `  ( SymGrp `
 N ) )
205, 6, 19matepm2cl 20269 . . . . . 6  |-  ( ( R  e.  Ring  /\  Q  e.  P  /\  (
i  e.  N , 
j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) )  e.  B
)  ->  A. m  e.  N  ( m
( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  m ) )  e.  ( Base `  R ) )
2112, 14, 18, 20syl3anc 1326 . . . . 5  |-  ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N
)  /\  Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } ) )  ->  A. m  e.  N  ( m
( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  m ) )  e.  ( Base `  R ) )
22 id 22 . . . . . . . 8  |-  ( m  =  n  ->  m  =  n )
23 fveq2 6191 . . . . . . . 8  |-  ( m  =  n  ->  ( Q `  m )  =  ( Q `  n ) )
2422, 23oveq12d 6668 . . . . . . 7  |-  ( m  =  n  ->  (
m ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  m ) )  =  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  n ) ) )
2524eleq1d 2686 . . . . . 6  |-  ( m  =  n  ->  (
( m ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  m ) )  e.  ( Base `  R
)  <->  ( n ( i  e.  N , 
j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `
 n ) )  e.  ( Base `  R
) ) )
2625rspccv 3306 . . . . 5  |-  ( A. m  e.  N  (
m ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  m ) )  e.  ( Base `  R
)  ->  ( n  e.  N  ->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  n ) )  e.  ( Base `  R ) ) )
2721, 26syl 17 . . . 4  |-  ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N
)  /\  Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } ) )  ->  ( n  e.  N  ->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  n ) )  e.  ( Base `  R ) ) )
2827imp 445 . . 3  |-  ( ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N )  /\  Q  e.  ( P  \  {
q  e.  P  | 
( q `  K
)  =  L }
) )  /\  n  e.  N )  ->  (
n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  n ) )  e.  ( Base `  R
) )
29 id 22 . . . . 5  |-  ( n  =  m  ->  n  =  m )
30 fveq2 6191 . . . . 5  |-  ( n  =  m  ->  ( Q `  n )  =  ( Q `  m ) )
3129, 30oveq12d 6668 . . . 4  |-  ( n  =  m  ->  (
n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  n ) )  =  ( m ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  m ) ) )
3231adantl 482 . . 3  |-  ( ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N )  /\  Q  e.  ( P  \  {
q  e.  P  | 
( q `  K
)  =  L }
) )  /\  n  =  m )  ->  (
n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  n ) )  =  ( m ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  m ) ) )
3319, 2, 15symgmatr01 20460 . . . . 5  |-  ( ( K  e.  N  /\  L  e.  N )  ->  ( Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } )  ->  E. m  e.  N  ( m ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  m ) )  =  .0.  ) )
34333adant1 1079 . . . 4  |-  ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N )  ->  ( Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } )  ->  E. m  e.  N  ( m ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  m ) )  =  .0.  ) )
3534imp 445 . . 3  |-  ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N
)  /\  Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } ) )  ->  E. m  e.  N  ( m
( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  m ) )  =  .0.  )
361, 2, 4, 10, 28, 32, 35gsummgp0 18608 . 2  |-  ( ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N
)  /\  Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } ) )  ->  ( G  gsumg  ( n  e.  N  |->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  n ) ) ) )  =  .0.  )
3736ex 450 1  |-  ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N )  ->  ( Q  e.  ( P  \  { q  e.  P  |  ( q `  K )  =  L } )  ->  ( G  gsumg  ( n  e.  N  |->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  n ) ) ) )  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101   SymGrpcsymg 17797  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547   CRingccrg 18548   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-mulg 17541  df-cntz 17750  df-symg 17798  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214
This theorem is referenced by:  smadiadetlem1a  20469
  Copyright terms: Public domain W3C validator