![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version Unicode version |
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
Ref | Expression |
---|---|
negcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 10269 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 0cn 10032 |
. . 3
![]() ![]() ![]() ![]() | |
3 | subcl 10280 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpan 706 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | syl5eqel 2705 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-sub 10268 df-neg 10269 |
This theorem is referenced by: negicn 10282 negcon1 10333 negdi 10338 negdi2 10339 negsubdi2 10340 neg2sub 10341 negcli 10349 negcld 10379 mulneg2 10467 mul2neg 10469 mulsub 10473 divneg 10719 divsubdir 10721 divsubdiv 10741 eqneg 10745 div2neg 10748 divneg2 10749 zeo 11463 sqneg 12923 binom2sub 12981 shftval4 13817 shftcan1 13823 shftcan2 13824 crim 13855 resub 13867 imsub 13875 cjneg 13887 cjsub 13889 absneg 14017 abs2dif2 14073 sqreulem 14099 sqreu 14100 subcn2 14325 risefallfac 14755 fallrisefac 14756 fallfac0 14759 binomrisefac 14773 efcan 14826 efne0 14827 efneg 14828 efsub 14830 sinneg 14876 cosneg 14877 tanneg 14878 efmival 14883 sinhval 14884 coshval 14885 sinsub 14898 cossub 14899 sincossq 14906 cnaddablx 18271 cnaddabl 18272 cnaddinv 18274 cncrng 19767 cnfldneg 19772 cnlmod 22940 cnstrcvs 22941 cncvs 22945 plyremlem 24059 reeff1o 24201 sin2pim 24237 cos2pim 24238 cxpsub 24428 cxpsqrt 24449 logrec 24501 asinlem3 24598 asinneg 24613 acosneg 24614 sinasin 24616 asinsin 24619 cosasin 24631 atantan 24650 ex-exp 27307 cnaddabloOLD 27436 hvsubdistr2 27907 spanunsni 28438 ltflcei 33397 dvasin 33496 sub2times 39485 cosknegpi 40080 etransclem18 40469 etransclem46 40497 altgsumbcALT 42131 sinhpcosh 42481 |
Copyright terms: Public domain | W3C validator |