MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sranlm Structured version   Visualization version   Unicode version

Theorem sranlm 22488
Description: The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
sranlm.a  |-  A  =  ( (subringAlg  `  W ) `
 S )
Assertion
Ref Expression
sranlm  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A  e. NrmMod )

Proof of Theorem sranlm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgngp 22466 . . . . 5  |-  ( W  e. NrmRing  ->  W  e. NrmGrp )
21adantr 481 . . . 4  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  W  e. NrmGrp )
3 eqidd 2623 . . . . 5  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( Base `  W )  =  (
Base `  W )
)
4 sranlm.a . . . . . . 7  |-  A  =  ( (subringAlg  `  W ) `
 S )
54a1i 11 . . . . . 6  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A  =  ( (subringAlg  `  W ) `  S ) )
6 eqid 2622 . . . . . . . 8  |-  ( Base `  W )  =  (
Base `  W )
76subrgss 18781 . . . . . . 7  |-  ( S  e.  (SubRing `  W
)  ->  S  C_  ( Base `  W ) )
87adantl 482 . . . . . 6  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  S  C_  ( Base `  W ) )
95, 8srabase 19178 . . . . 5  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( Base `  W )  =  (
Base `  A )
)
105, 8sraaddg 19179 . . . . . 6  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( +g  `  W )  =  ( +g  `  A ) )
1110oveqdr 6674 . . . . 5  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
) )  ->  (
x ( +g  `  W
) y )  =  ( x ( +g  `  A ) y ) )
125, 8srads 19186 . . . . . 6  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( dist `  W )  =  (
dist `  A )
)
1312reseq1d 5395 . . . . 5  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) )  =  ( ( dist `  A )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) )
145, 8sratopn 19185 . . . . 5  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( TopOpen `  W )  =  (
TopOpen `  A ) )
153, 9, 11, 13, 14ngppropd 22441 . . . 4  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( W  e. NrmGrp  <-> 
A  e. NrmGrp ) )
162, 15mpbid 222 . . 3  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A  e. NrmGrp )
174sralmod 19187 . . . 4  |-  ( S  e.  (SubRing `  W
)  ->  A  e.  LMod )
1817adantl 482 . . 3  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A  e.  LMod )
195, 8srasca 19181 . . . 4  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( Ws  S
)  =  (Scalar `  A ) )
20 eqid 2622 . . . . 5  |-  ( Ws  S )  =  ( Ws  S )
2120subrgnrg 22477 . . . 4  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( Ws  S
)  e. NrmRing )
2219, 21eqeltrrd 2702 . . 3  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  (Scalar `  A
)  e. NrmRing )
2316, 18, 223jca 1242 . 2  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( A  e. NrmGrp  /\  A  e.  LMod  /\  (Scalar `  A )  e. NrmRing ) )
24 eqid 2622 . . . . . . . 8  |-  ( norm `  W )  =  (
norm `  W )
25 eqid 2622 . . . . . . . 8  |-  (AbsVal `  W )  =  (AbsVal `  W )
2624, 25nrgabv 22465 . . . . . . 7  |-  ( W  e. NrmRing  ->  ( norm `  W
)  e.  (AbsVal `  W ) )
2726ad2antrr 762 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( norm `  W
)  e.  (AbsVal `  W ) )
288adantr 481 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  S  C_  ( Base `  W ) )
29 simprl 794 . . . . . . . 8  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  x  e.  (
Base `  (Scalar `  A
) ) )
3020subrgbas 18789 . . . . . . . . . . 11  |-  ( S  e.  (SubRing `  W
)  ->  S  =  ( Base `  ( Ws  S
) ) )
3130adantl 482 . . . . . . . . . 10  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  S  =  ( Base `  ( Ws  S
) ) )
3219fveq2d 6195 . . . . . . . . . 10  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( Base `  ( Ws  S ) )  =  ( Base `  (Scalar `  A ) ) )
3331, 32eqtrd 2656 . . . . . . . . 9  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  S  =  ( Base `  (Scalar `  A
) ) )
3433adantr 481 . . . . . . . 8  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  S  =  (
Base `  (Scalar `  A
) ) )
3529, 34eleqtrrd 2704 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  x  e.  S
)
3628, 35sseldd 3604 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  x  e.  (
Base `  W )
)
37 simprr 796 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  y  e.  (
Base `  A )
)
389adantr 481 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( Base `  W
)  =  ( Base `  A ) )
3937, 38eleqtrrd 2704 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  y  e.  (
Base `  W )
)
40 eqid 2622 . . . . . . 7  |-  ( .r
`  W )  =  ( .r `  W
)
4125, 6, 40abvmul 18829 . . . . . 6  |-  ( ( ( norm `  W
)  e.  (AbsVal `  W )  /\  x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( ( norm `  W ) `  ( x ( .r
`  W ) y ) )  =  ( ( ( norm `  W
) `  x )  x.  ( ( norm `  W
) `  y )
) )
4227, 36, 39, 41syl3anc 1326 . . . . 5  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  W ) `  (
x ( .r `  W ) y ) )  =  ( ( ( norm `  W
) `  x )  x.  ( ( norm `  W
) `  y )
) )
439, 10, 12nmpropd 22398 . . . . . . 7  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( norm `  W )  =  (
norm `  A )
)
4443adantr 481 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( norm `  W
)  =  ( norm `  A ) )
455, 8sravsca 19182 . . . . . . 7  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( .r `  W )  =  ( .s `  A ) )
4645oveqdr 6674 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( x ( .r `  W ) y )  =  ( x ( .s `  A ) y ) )
4744, 46fveq12d 6197 . . . . 5  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  W ) `  (
x ( .r `  W ) y ) )  =  ( (
norm `  A ) `  ( x ( .s
`  A ) y ) ) )
4842, 47eqtr3d 2658 . . . 4  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( (
norm `  W ) `  x )  x.  (
( norm `  W ) `  y ) )  =  ( ( norm `  A
) `  ( x
( .s `  A
) y ) ) )
49 subrgsubg 18786 . . . . . . . 8  |-  ( S  e.  (SubRing `  W
)  ->  S  e.  (SubGrp `  W ) )
5049ad2antlr 763 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  S  e.  (SubGrp `  W ) )
51 eqid 2622 . . . . . . . 8  |-  ( norm `  ( Ws  S ) )  =  ( norm `  ( Ws  S ) )
5220, 24, 51subgnm2 22438 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  W )  /\  x  e.  S )  ->  (
( norm `  ( Ws  S
) ) `  x
)  =  ( (
norm `  W ) `  x ) )
5350, 35, 52syl2anc 693 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  ( Ws  S ) ) `  x )  =  ( ( norm `  W
) `  x )
)
5419adantr 481 . . . . . . . 8  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( Ws  S )  =  (Scalar `  A
) )
5554fveq2d 6195 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( norm `  ( Ws  S ) )  =  ( norm `  (Scalar `  A ) ) )
5655fveq1d 6193 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  ( Ws  S ) ) `  x )  =  ( ( norm `  (Scalar `  A ) ) `  x ) )
5753, 56eqtr3d 2658 . . . . 5  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  W ) `  x
)  =  ( (
norm `  (Scalar `  A
) ) `  x
) )
5844fveq1d 6193 . . . . 5  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  W ) `  y
)  =  ( (
norm `  A ) `  y ) )
5957, 58oveq12d 6668 . . . 4  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( (
norm `  W ) `  x )  x.  (
( norm `  W ) `  y ) )  =  ( ( ( norm `  (Scalar `  A )
) `  x )  x.  ( ( norm `  A
) `  y )
) )
6048, 59eqtr3d 2658 . . 3  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  A ) `  (
x ( .s `  A ) y ) )  =  ( ( ( norm `  (Scalar `  A ) ) `  x )  x.  (
( norm `  A ) `  y ) ) )
6160ralrimivva 2971 . 2  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A. x  e.  ( Base `  (Scalar `  A ) ) A. y  e.  ( Base `  A ) ( (
norm `  A ) `  ( x ( .s
`  A ) y ) )  =  ( ( ( norm `  (Scalar `  A ) ) `  x )  x.  (
( norm `  A ) `  y ) ) )
62 eqid 2622 . . 3  |-  ( Base `  A )  =  (
Base `  A )
63 eqid 2622 . . 3  |-  ( norm `  A )  =  (
norm `  A )
64 eqid 2622 . . 3  |-  ( .s
`  A )  =  ( .s `  A
)
65 eqid 2622 . . 3  |-  (Scalar `  A )  =  (Scalar `  A )
66 eqid 2622 . . 3  |-  ( Base `  (Scalar `  A )
)  =  ( Base `  (Scalar `  A )
)
67 eqid 2622 . . 3  |-  ( norm `  (Scalar `  A )
)  =  ( norm `  (Scalar `  A )
)
6862, 63, 64, 65, 66, 67isnlm 22479 . 2  |-  ( A  e. NrmMod 
<->  ( ( A  e. NrmGrp  /\  A  e.  LMod  /\  (Scalar `  A )  e. NrmRing )  /\  A. x  e.  ( Base `  (Scalar `  A ) ) A. y  e.  ( Base `  A ) ( (
norm `  A ) `  ( x ( .s
`  A ) y ) )  =  ( ( ( norm `  (Scalar `  A ) ) `  x )  x.  (
( norm `  A ) `  y ) ) ) )
6923, 61, 68sylanbrc 698 1  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A  e. NrmMod )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574    X. cxp 5112   ` cfv 5888  (class class class)co 6650    x. cmul 9941   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   distcds 15950  SubGrpcsubg 17588  SubRingcsubrg 18776  AbsValcabv 18816   LModclmod 18863  subringAlg csra 19168   normcnm 22381  NrmGrpcngp 22382  NrmRingcnrg 22384  NrmModcnlm 22385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-abv 18817  df-lmod 18865  df-sra 19172  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391
This theorem is referenced by:  rlmnlm  22492  srabn  23156
  Copyright terms: Public domain W3C validator