| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphsqrtcl2 | Structured version Visualization version Unicode version | ||
| Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsca.f |
|
| cphsca.k |
|
| Ref | Expression |
|---|---|
| cphsqrtcl2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrt0 13982 |
. . . . 5
| |
| 2 | fveq2 6191 |
. . . . 5
| |
| 3 | id 22 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3eqtr4a 2682 |
. . . 4
|
| 5 | 4 | adantl 482 |
. . 3
|
| 6 | simpl2 1065 |
. . 3
| |
| 7 | 5, 6 | eqeltrd 2701 |
. 2
|
| 8 | simpl1 1064 |
. . . . . . 7
| |
| 9 | cphsca.f |
. . . . . . . 8
| |
| 10 | cphsca.k |
. . . . . . . 8
| |
| 11 | 9, 10 | cphsubrg 22980 |
. . . . . . 7
|
| 12 | 8, 11 | syl 17 |
. . . . . 6
|
| 13 | cnfldbas 19750 |
. . . . . . 7
| |
| 14 | 13 | subrgss 18781 |
. . . . . 6
|
| 15 | 12, 14 | syl 17 |
. . . . 5
|
| 16 | simpl2 1065 |
. . . . . . . 8
| |
| 17 | 9, 10 | cphabscl 22985 |
. . . . . . . 8
|
| 18 | 8, 16, 17 | syl2anc 693 |
. . . . . . 7
|
| 19 | 15, 16 | sseldd 3604 |
. . . . . . . 8
|
| 20 | 19 | abscld 14175 |
. . . . . . 7
|
| 21 | 19 | absge0d 14183 |
. . . . . . 7
|
| 22 | 9, 10 | cphsqrtcl 22984 |
. . . . . . 7
|
| 23 | 8, 18, 20, 21, 22 | syl13anc 1328 |
. . . . . 6
|
| 24 | cnfldadd 19751 |
. . . . . . . . 9
| |
| 25 | 24 | subrgacl 18791 |
. . . . . . . 8
|
| 26 | 12, 18, 16, 25 | syl3anc 1326 |
. . . . . . 7
|
| 27 | 9, 10 | cphabscl 22985 |
. . . . . . . 8
|
| 28 | 8, 26, 27 | syl2anc 693 |
. . . . . . 7
|
| 29 | 15, 26 | sseldd 3604 |
. . . . . . . 8
|
| 30 | simpl3 1066 |
. . . . . . . . 9
| |
| 31 | 20 | recnd 10068 |
. . . . . . . . . . . . . 14
|
| 32 | 31, 19 | subnegd 10399 |
. . . . . . . . . . . . 13
|
| 33 | 32 | eqeq1d 2624 |
. . . . . . . . . . . 12
|
| 34 | 19 | negcld 10379 |
. . . . . . . . . . . . 13
|
| 35 | 31, 34 | subeq0ad 10402 |
. . . . . . . . . . . 12
|
| 36 | 33, 35 | bitr3d 270 |
. . . . . . . . . . 11
|
| 37 | absrpcl 14028 |
. . . . . . . . . . . . 13
| |
| 38 | 19, 37 | sylancom 701 |
. . . . . . . . . . . 12
|
| 39 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 40 | 38, 39 | syl5ibcom 235 |
. . . . . . . . . . 11
|
| 41 | 36, 40 | sylbid 230 |
. . . . . . . . . 10
|
| 42 | 41 | necon3bd 2808 |
. . . . . . . . 9
|
| 43 | 30, 42 | mpd 15 |
. . . . . . . 8
|
| 44 | 29, 43 | absne0d 14186 |
. . . . . . 7
|
| 45 | 9, 10 | cphdivcl 22982 |
. . . . . . 7
|
| 46 | 8, 26, 28, 44, 45 | syl13anc 1328 |
. . . . . 6
|
| 47 | cnfldmul 19752 |
. . . . . . 7
| |
| 48 | 47 | subrgmcl 18792 |
. . . . . 6
|
| 49 | 12, 23, 46, 48 | syl3anc 1326 |
. . . . 5
|
| 50 | 15, 49 | sseldd 3604 |
. . . 4
|
| 51 | eqid 2622 |
. . . . . . 7
| |
| 52 | 51 | sqreulem 14099 |
. . . . . 6
|
| 53 | 19, 43, 52 | syl2anc 693 |
. . . . 5
|
| 54 | 53 | simp1d 1073 |
. . . 4
|
| 55 | 53 | simp2d 1074 |
. . . 4
|
| 56 | 53 | simp3d 1075 |
. . . . 5
|
| 57 | df-nel 2898 |
. . . . 5
| |
| 58 | 56, 57 | sylib 208 |
. . . 4
|
| 59 | 50, 19, 54, 55, 58 | eqsqrtd 14107 |
. . 3
|
| 60 | 59, 49 | eqeltrrd 2702 |
. 2
|
| 61 | 7, 60 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-ico 12181 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-subg 17591 df-ghm 17658 df-cmn 18195 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-rnghom 18715 df-drng 18749 df-subrg 18778 df-staf 18845 df-srng 18846 df-lvec 19103 df-cnfld 19747 df-phl 19971 df-cph 22968 |
| This theorem is referenced by: cphsqrtcl3 22987 |
| Copyright terms: Public domain | W3C validator |