MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsqrtcl2 Structured version   Visualization version   Unicode version

Theorem cphsqrtcl2 22986
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f  |-  F  =  (Scalar `  W )
cphsca.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
cphsqrtcl2  |-  ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  ->  ( sqr `  A )  e.  K )

Proof of Theorem cphsqrtcl2
StepHypRef Expression
1 sqrt0 13982 . . . . 5  |-  ( sqr `  0 )  =  0
2 fveq2 6191 . . . . 5  |-  ( A  =  0  ->  ( sqr `  A )  =  ( sqr `  0
) )
3 id 22 . . . . 5  |-  ( A  =  0  ->  A  =  0 )
41, 2, 33eqtr4a 2682 . . . 4  |-  ( A  =  0  ->  ( sqr `  A )  =  A )
54adantl 482 . . 3  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =  0 )  ->  ( sqr `  A )  =  A )
6 simpl2 1065 . . 3  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =  0 )  ->  A  e.  K )
75, 6eqeltrd 2701 . 2  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =  0 )  ->  ( sqr `  A )  e.  K
)
8 simpl1 1064 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  W  e.  CPreHil )
9 cphsca.f . . . . . . . 8  |-  F  =  (Scalar `  W )
10 cphsca.k . . . . . . . 8  |-  K  =  ( Base `  F
)
119, 10cphsubrg 22980 . . . . . . 7  |-  ( W  e.  CPreHil  ->  K  e.  (SubRing ` fld ) )
128, 11syl 17 . . . . . 6  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  K  e.  (SubRing ` fld ) )
13 cnfldbas 19750 . . . . . . 7  |-  CC  =  ( Base ` fld )
1413subrgss 18781 . . . . . 6  |-  ( K  e.  (SubRing ` fld )  ->  K  C_  CC )
1512, 14syl 17 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  K  C_  CC )
16 simpl2 1065 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  A  e.  K )
179, 10cphabscl 22985 . . . . . . . 8  |-  ( ( W  e.  CPreHil  /\  A  e.  K )  ->  ( abs `  A )  e.  K )
188, 16, 17syl2anc 693 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  K
)
1915, 16sseldd 3604 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  A  e.  CC )
2019abscld 14175 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  RR )
2119absge0d 14183 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  0  <_  ( abs `  A ) )
229, 10cphsqrtcl 22984 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  (
( abs `  A
)  e.  K  /\  ( abs `  A )  e.  RR  /\  0  <_  ( abs `  A
) ) )  -> 
( sqr `  ( abs `  A ) )  e.  K )
238, 18, 20, 21, 22syl13anc 1328 . . . . . 6  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( sqr `  ( abs `  A
) )  e.  K
)
24 cnfldadd 19751 . . . . . . . . 9  |-  +  =  ( +g  ` fld )
2524subrgacl 18791 . . . . . . . 8  |-  ( ( K  e.  (SubRing ` fld )  /\  ( abs `  A )  e.  K  /\  A  e.  K )  ->  (
( abs `  A
)  +  A )  e.  K )
2612, 18, 16, 25syl3anc 1326 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  +  A )  e.  K
)
279, 10cphabscl 22985 . . . . . . . 8  |-  ( ( W  e.  CPreHil  /\  (
( abs `  A
)  +  A )  e.  K )  -> 
( abs `  (
( abs `  A
)  +  A ) )  e.  K )
288, 26, 27syl2anc 693 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( abs `  ( ( abs `  A
)  +  A ) )  e.  K )
2915, 26sseldd 3604 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  +  A )  e.  CC )
30 simpl3 1066 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  -.  -u A  e.  RR+ )
3120recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  CC )
3231, 19subnegd 10399 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  -  -u A )  =  ( ( abs `  A
)  +  A ) )
3332eqeq1d 2624 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  -  -u A
)  =  0  <->  (
( abs `  A
)  +  A )  =  0 ) )
3419negcld 10379 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  -u A  e.  CC )
3531, 34subeq0ad 10402 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  -  -u A
)  =  0  <->  ( abs `  A )  = 
-u A ) )
3633, 35bitr3d 270 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  +  A )  =  0  <->  ( abs `  A )  =  -u A ) )
37 absrpcl 14028 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
3819, 37sylancom 701 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  RR+ )
39 eleq1 2689 . . . . . . . . . . . 12  |-  ( ( abs `  A )  =  -u A  ->  (
( abs `  A
)  e.  RR+  <->  -u A  e.  RR+ ) )
4038, 39syl5ibcom 235 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  = 
-u A  ->  -u A  e.  RR+ ) )
4136, 40sylbid 230 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  +  A )  =  0  ->  -u A  e.  RR+ ) )
4241necon3bd 2808 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( -.  -u A  e.  RR+  ->  ( ( abs `  A
)  +  A )  =/=  0 ) )
4330, 42mpd 15 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  +  A )  =/=  0
)
4429, 43absne0d 14186 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( abs `  ( ( abs `  A
)  +  A ) )  =/=  0 )
459, 10cphdivcl 22982 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  (
( ( abs `  A
)  +  A )  e.  K  /\  ( abs `  ( ( abs `  A )  +  A
) )  e.  K  /\  ( abs `  (
( abs `  A
)  +  A ) )  =/=  0 ) )  ->  ( (
( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) )  e.  K
)
468, 26, 28, 44, 45syl13anc 1328 . . . . . 6  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) )  e.  K
)
47 cnfldmul 19752 . . . . . . 7  |-  x.  =  ( .r ` fld )
4847subrgmcl 18792 . . . . . 6  |-  ( ( K  e.  (SubRing ` fld )  /\  ( sqr `  ( abs `  A
) )  e.  K  /\  ( ( ( abs `  A )  +  A
)  /  ( abs `  ( ( abs `  A
)  +  A ) ) )  e.  K
)  ->  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  e.  K )
4912, 23, 46, 48syl3anc 1326 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  e.  K )
5015, 49sseldd 3604 . . . 4  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  e.  CC )
51 eqid 2622 . . . . . . 7  |-  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A
)  /  ( abs `  ( ( abs `  A
)  +  A ) ) ) )  =  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) )
5251sqreulem 14099 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( abs `  A
)  +  A )  =/=  0 )  -> 
( ( ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A
)  /  ( abs `  ( ( abs `  A
)  +  A ) ) ) ) ^
2 )  =  A  /\  0  <_  (
Re `  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) ) )  /\  ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) )  e/  RR+ ) )
5319, 43, 52syl2anc 693 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( (
( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) ^
2 )  =  A  /\  0  <_  (
Re `  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) ) )  /\  ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) )  e/  RR+ ) )
5453simp1d 1073 . . . 4  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( (
( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) ^
2 )  =  A )
5553simp2d 1074 . . . 4  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  0  <_  ( Re `  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A
)  /  ( abs `  ( ( abs `  A
)  +  A ) ) ) ) ) )
5653simp3d 1075 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) )  e/  RR+ )
57 df-nel 2898 . . . . 5  |-  ( ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A
)  /  ( abs `  ( ( abs `  A
)  +  A ) ) ) ) )  e/  RR+  <->  -.  ( _i  x.  ( ( sqr `  ( abs `  A ) )  x.  ( ( ( abs `  A )  +  A )  / 
( abs `  (
( abs `  A
)  +  A ) ) ) ) )  e.  RR+ )
5856, 57sylib 208 . . . 4  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  -.  (
_i  x.  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) ) )  e.  RR+ )
5950, 19, 54, 55, 58eqsqrtd 14107 . . 3  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( ( sqr `  ( abs `  A
) )  x.  (
( ( abs `  A
)  +  A )  /  ( abs `  (
( abs `  A
)  +  A ) ) ) )  =  ( sqr `  A
) )
6059, 49eqeltrrd 2702 . 2  |-  ( ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  /\  A  =/=  0
)  ->  ( sqr `  A )  e.  K
)
617, 60pm2.61dane 2881 1  |-  ( ( W  e.  CPreHil  /\  A  e.  K  /\  -.  -u A  e.  RR+ )  ->  ( sqr `  A )  e.  K )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   _ici 9938    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   RR+crp 11832   ^cexp 12860   Recre 13837   sqrcsqrt 13973   abscabs 13974   Basecbs 15857  Scalarcsca 15944  SubRingcsubrg 18776  ℂfldccnfld 19746   CPreHilccph 22966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-staf 18845  df-srng 18846  df-lvec 19103  df-cnfld 19747  df-phl 19971  df-cph 22968
This theorem is referenced by:  cphsqrtcl3  22987
  Copyright terms: Public domain W3C validator