MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylply2 Structured version   Visualization version   Unicode version

Theorem taylply2 24122
Description: The Taylor polynomial is a polynomial of degree (at most)  N. This version of taylply 24123 shows that the coefficients of  T are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylpfval.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylpfval.f  |-  ( ph  ->  F : A --> CC )
taylpfval.a  |-  ( ph  ->  A  C_  S )
taylpfval.n  |-  ( ph  ->  N  e.  NN0 )
taylpfval.b  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
taylpfval.t  |-  T  =  ( N ( S Tayl 
F ) B )
taylply2.1  |-  ( ph  ->  D  e.  (SubRing ` fld ) )
taylply2.2  |-  ( ph  ->  B  e.  D )
taylply2.3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  e.  D )
Assertion
Ref Expression
taylply2  |-  ( ph  ->  ( T  e.  (Poly `  D )  /\  (deg `  T )  <_  N
) )
Distinct variable groups:    B, k    k, F    k, N    ph, k    D, k    S, k
Allowed substitution hints:    A( k)    T( k)

Proof of Theorem taylply2
Dummy variables  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylpfval.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 taylpfval.f . . . . 5  |-  ( ph  ->  F : A --> CC )
3 taylpfval.a . . . . 5  |-  ( ph  ->  A  C_  S )
4 taylpfval.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
5 taylpfval.b . . . . 5  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
6 taylpfval.t . . . . 5  |-  T  =  ( N ( S Tayl 
F ) B )
71, 2, 3, 4, 5, 6taylpfval 24119 . . . 4  |-  ( ph  ->  T  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) )
8 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  CC )
9 cnex 10017 . . . . . . . . . . . . 13  |-  CC  e.  _V
109a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  CC  e.  _V )
11 elpm2r 7875 . . . . . . . . . . . 12  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : A --> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
1210, 1, 2, 3, 11syl22anc 1327 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
13 dvnbss 23691 . . . . . . . . . . 11  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  dom  ( ( S  Dn F ) `  N ) 
C_  dom  F )
141, 12, 4, 13syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 N )  C_  dom  F )
15 fdm 6051 . . . . . . . . . . 11  |-  ( F : A --> CC  ->  dom 
F  =  A )
162, 15syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  F  =  A )
1714, 16sseqtrd 3641 . . . . . . . . 9  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 N )  C_  A )
18 recnprss 23668 . . . . . . . . . . 11  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
191, 18syl 17 . . . . . . . . . 10  |-  ( ph  ->  S  C_  CC )
203, 19sstrd 3613 . . . . . . . . 9  |-  ( ph  ->  A  C_  CC )
2117, 20sstrd 3613 . . . . . . . 8  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 N )  C_  CC )
2221, 5sseldd 3604 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
2322adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  CC )
248, 23subcld 10392 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  ( x  -  B )  e.  CC )
25 df-idp 23945 . . . . . . . 8  |-  Xp  =  (  _I  |`  CC )
26 mptresid 5456 . . . . . . . 8  |-  ( x  e.  CC  |->  x )  =  (  _I  |`  CC )
2725, 26eqtr4i 2647 . . . . . . 7  |-  Xp  =  ( x  e.  CC  |->  x )
2827a1i 11 . . . . . 6  |-  ( ph  ->  Xp  =  ( x  e.  CC  |->  x ) )
29 fconstmpt 5163 . . . . . . 7  |-  ( CC 
X.  { B }
)  =  ( x  e.  CC  |->  B )
3029a1i 11 . . . . . 6  |-  ( ph  ->  ( CC  X.  { B } )  =  ( x  e.  CC  |->  B ) )
3110, 8, 23, 28, 30offval2 6914 . . . . 5  |-  ( ph  ->  ( Xp  oF  -  ( CC 
X.  { B }
) )  =  ( x  e.  CC  |->  ( x  -  B ) ) )
32 eqidd 2623 . . . . 5  |-  ( ph  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) )  =  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) ) )
33 oveq1 6657 . . . . . . 7  |-  ( y  =  ( x  -  B )  ->  (
y ^ k )  =  ( ( x  -  B ) ^
k ) )
3433oveq2d 6666 . . . . . 6  |-  ( y  =  ( x  -  B )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) )  =  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) )
3534sumeq2sdv 14435 . . . . 5  |-  ( y  =  ( x  -  B )  ->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( y ^
k ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) )
3624, 31, 32, 35fmptco 6396 . . . 4  |-  ( ph  ->  ( ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( y ^ k
) ) )  o.  ( Xp  oF  -  ( CC 
X.  { B }
) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) )
377, 36eqtr4d 2659 . . 3  |-  ( ph  ->  T  =  ( ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) )  o.  (
Xp  oF  -  ( CC  X.  { B } ) ) ) )
38 taylply2.1 . . . . . 6  |-  ( ph  ->  D  e.  (SubRing ` fld ) )
39 cnfldbas 19750 . . . . . . 7  |-  CC  =  ( Base ` fld )
4039subrgss 18781 . . . . . 6  |-  ( D  e.  (SubRing ` fld )  ->  D  C_  CC )
4138, 40syl 17 . . . . 5  |-  ( ph  ->  D  C_  CC )
42 taylply2.3 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  e.  D )
4341, 4, 42elplyd 23958 . . . 4  |-  ( ph  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) )  e.  (Poly `  D ) )
44 cnfld1 19771 . . . . . . . 8  |-  1  =  ( 1r ` fld )
4544subrg1cl 18788 . . . . . . 7  |-  ( D  e.  (SubRing ` fld )  ->  1  e.  D )
4638, 45syl 17 . . . . . 6  |-  ( ph  ->  1  e.  D )
47 plyid 23965 . . . . . 6  |-  ( ( D  C_  CC  /\  1  e.  D )  ->  Xp  e.  (Poly `  D
) )
4841, 46, 47syl2anc 693 . . . . 5  |-  ( ph  ->  Xp  e.  (Poly `  D ) )
49 taylply2.2 . . . . . 6  |-  ( ph  ->  B  e.  D )
50 plyconst 23962 . . . . . 6  |-  ( ( D  C_  CC  /\  B  e.  D )  ->  ( CC  X.  { B }
)  e.  (Poly `  D ) )
5141, 49, 50syl2anc 693 . . . . 5  |-  ( ph  ->  ( CC  X.  { B } )  e.  (Poly `  D ) )
52 subrgsubg 18786 . . . . . . 7  |-  ( D  e.  (SubRing ` fld )  ->  D  e.  (SubGrp ` fld ) )
5338, 52syl 17 . . . . . 6  |-  ( ph  ->  D  e.  (SubGrp ` fld )
)
54 cnfldadd 19751 . . . . . . . 8  |-  +  =  ( +g  ` fld )
5554subgcl 17604 . . . . . . 7  |-  ( ( D  e.  (SubGrp ` fld )  /\  u  e.  D  /\  v  e.  D
)  ->  ( u  +  v )  e.  D )
56553expb 1266 . . . . . 6  |-  ( ( D  e.  (SubGrp ` fld )  /\  ( u  e.  D  /\  v  e.  D
) )  ->  (
u  +  v )  e.  D )
5753, 56sylan 488 . . . . 5  |-  ( (
ph  /\  ( u  e.  D  /\  v  e.  D ) )  -> 
( u  +  v )  e.  D )
58 cnfldmul 19752 . . . . . . . 8  |-  x.  =  ( .r ` fld )
5958subrgmcl 18792 . . . . . . 7  |-  ( ( D  e.  (SubRing ` fld )  /\  u  e.  D  /\  v  e.  D )  ->  (
u  x.  v )  e.  D )
60593expb 1266 . . . . . 6  |-  ( ( D  e.  (SubRing ` fld )  /\  (
u  e.  D  /\  v  e.  D )
)  ->  ( u  x.  v )  e.  D
)
6138, 60sylan 488 . . . . 5  |-  ( (
ph  /\  ( u  e.  D  /\  v  e.  D ) )  -> 
( u  x.  v
)  e.  D )
62 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
63 cnfldneg 19772 . . . . . . 7  |-  ( 1  e.  CC  ->  (
( invg ` fld ) `  1 )  = 
-u 1 )
6462, 63ax-mp 5 . . . . . 6  |-  ( ( invg ` fld ) `  1 )  =  -u 1
65 eqid 2622 . . . . . . . 8  |-  ( invg ` fld )  =  ( invg ` fld )
6665subginvcl 17603 . . . . . . 7  |-  ( ( D  e.  (SubGrp ` fld )  /\  1  e.  D
)  ->  ( ( invg ` fld ) `  1 )  e.  D )
6753, 46, 66syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( invg ` fld ) `  1 )  e.  D )
6864, 67syl5eqelr 2706 . . . . 5  |-  ( ph  -> 
-u 1  e.  D
)
6948, 51, 57, 61, 68plysub 23975 . . . 4  |-  ( ph  ->  ( Xp  oF  -  ( CC 
X.  { B }
) )  e.  (Poly `  D ) )
7043, 69, 57, 61plyco 23997 . . 3  |-  ( ph  ->  ( ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( y ^ k
) ) )  o.  ( Xp  oF  -  ( CC 
X.  { B }
) ) )  e.  (Poly `  D )
)
7137, 70eqeltrd 2701 . 2  |-  ( ph  ->  T  e.  (Poly `  D ) )
7237fveq2d 6195 . . . 4  |-  ( ph  ->  (deg `  T )  =  (deg `  ( (
y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) )  o.  (
Xp  oF  -  ( CC  X.  { B } ) ) ) ) )
73 eqid 2622 . . . . 5  |-  (deg `  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) ) )  =  (deg `  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( y ^ k
) ) ) )
74 eqid 2622 . . . . 5  |-  (deg `  ( Xp  oF  -  ( CC 
X.  { B }
) ) )  =  (deg `  ( Xp  oF  -  ( CC  X.  { B }
) ) )
7573, 74, 43, 69dgrco 24031 . . . 4  |-  ( ph  ->  (deg `  ( (
y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) )  o.  (
Xp  oF  -  ( CC  X.  { B } ) ) ) )  =  ( (deg `  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( y ^ k
) ) ) )  x.  (deg `  (
Xp  oF  -  ( CC  X.  { B } ) ) ) ) )
76 eqid 2622 . . . . . . . . 9  |-  ( Xp  oF  -  ( CC  X.  { B } ) )  =  ( Xp  oF  -  ( CC 
X.  { B }
) )
7776plyremlem 24059 . . . . . . . 8  |-  ( B  e.  CC  ->  (
( Xp  oF  -  ( CC 
X.  { B }
) )  e.  (Poly `  CC )  /\  (deg `  ( Xp  oF  -  ( CC 
X.  { B }
) ) )  =  1  /\  ( `' ( Xp  oF  -  ( CC 
X.  { B }
) ) " {
0 } )  =  { B } ) )
7822, 77syl 17 . . . . . . 7  |-  ( ph  ->  ( ( Xp  oF  -  ( CC  X.  { B }
) )  e.  (Poly `  CC )  /\  (deg `  ( Xp  oF  -  ( CC 
X.  { B }
) ) )  =  1  /\  ( `' ( Xp  oF  -  ( CC 
X.  { B }
) ) " {
0 } )  =  { B } ) )
7978simp2d 1074 . . . . . 6  |-  ( ph  ->  (deg `  ( Xp  oF  -  ( CC  X.  { B }
) ) )  =  1 )
8079oveq2d 6666 . . . . 5  |-  ( ph  ->  ( (deg `  (
y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) ) )  x.  (deg `  ( Xp  oF  -  ( CC  X.  { B }
) ) ) )  =  ( (deg `  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) ) )  x.  1 ) )
81 dgrcl 23989 . . . . . . . 8  |-  ( ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) )  e.  (Poly `  D )  ->  (deg `  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) ) )  e. 
NN0 )
8243, 81syl 17 . . . . . . 7  |-  ( ph  ->  (deg `  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( y ^ k
) ) ) )  e.  NN0 )
8382nn0cnd 11353 . . . . . 6  |-  ( ph  ->  (deg `  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( y ^ k
) ) ) )  e.  CC )
8483mulid1d 10057 . . . . 5  |-  ( ph  ->  ( (deg `  (
y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) ) )  x.  1 )  =  (deg
`  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( y ^ k
) ) ) ) )
8580, 84eqtrd 2656 . . . 4  |-  ( ph  ->  ( (deg `  (
y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) ) )  x.  (deg `  ( Xp  oF  -  ( CC  X.  { B }
) ) ) )  =  (deg `  (
y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
y ^ k ) ) ) ) )
8672, 75, 853eqtrd 2660 . . 3  |-  ( ph  ->  (deg `  T )  =  (deg `  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( y ^ k
) ) ) ) )
871adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  S  e.  { RR ,  CC } )
8812adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  F  e.  ( CC  ^pm  S
) )
89 elfznn0 12433 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
9089adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
91 dvnf 23690 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  k  e.  NN0 )  ->  ( ( S  Dn F ) `
 k ) : dom  ( ( S  Dn F ) `
 k ) --> CC )
9287, 88, 90, 91syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( S  Dn
F ) `  k
) : dom  (
( S  Dn
F ) `  k
) --> CC )
93 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ( 0 ... N
) )
94 dvn2bss 23693 . . . . . . . 8  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  k  e.  ( 0 ... N
) )  ->  dom  ( ( S  Dn F ) `  N )  C_  dom  ( ( S  Dn F ) `  k ) )
9587, 88, 93, 94syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  dom  ( ( S  Dn F ) `  N )  C_  dom  ( ( S  Dn F ) `  k ) )
965adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  B  e.  dom  ( ( S  Dn F ) `
 N ) )
9795, 96sseldd 3604 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
9892, 97ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( S  Dn F ) `  k ) `  B
)  e.  CC )
99 faccl 13070 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
10090, 99syl 17 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( ! `  k )  e.  NN )
101100nncnd 11036 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( ! `  k )  e.  CC )
102100nnne0d 11065 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( ! `  k )  =/=  0 )
10398, 101, 102divcld 10801 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  e.  CC )
10443, 4, 103, 32dgrle 23999 . . 3  |-  ( ph  ->  (deg `  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( y ^ k
) ) ) )  <_  N )
10586, 104eqbrtrd 4675 . 2  |-  ( ph  ->  (deg `  T )  <_  N )
10671, 105jca 554 1  |-  ( ph  ->  ( T  e.  (Poly `  D )  /\  (deg `  T )  <_  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    ^pm cpm 7858   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ...cfz 12326   ^cexp 12860   !cfa 13060   sum_csu 14416   invgcminusg 17423  SubGrpcsubg 17588  SubRingcsubrg 18776  ℂfldccnfld 19746    Dncdvn 23628  Polycply 23940   Xpcidp 23941  degcdgr 23943   Tayl ctayl 24107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-xms 22125  df-ms 22126  df-0p 23437  df-limc 23630  df-dv 23631  df-dvn 23632  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-tayl 24109
This theorem is referenced by:  taylply  24123  taylthlem2  24128
  Copyright terms: Public domain W3C validator