MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvply2g Structured version   Visualization version   Unicode version

Theorem dvply2g 24040
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
dvply2g  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  e.  (Poly `  S ) )

Proof of Theorem dvply2g
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyf 23954 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
21adantl 482 . . . . 5  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F : CC
--> CC )
32feqmptd 6249 . . . 4  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F  =  ( a  e.  CC  |->  ( F `  a ) ) )
4 simplr 792 . . . . . 6  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  a  e.  CC )  ->  F  e.  (Poly `  S ) )
5 dgrcl 23989 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
65adantl 482 . . . . . . . . 9  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  (deg `  F
)  e.  NN0 )
76nn0zd 11480 . . . . . . . 8  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  (deg `  F
)  e.  ZZ )
87adantr 481 . . . . . . 7  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  a  e.  CC )  ->  (deg `  F )  e.  ZZ )
9 uzid 11702 . . . . . . 7  |-  ( (deg
`  F )  e.  ZZ  ->  (deg `  F
)  e.  ( ZZ>= `  (deg `  F ) ) )
10 peano2uz 11741 . . . . . . 7  |-  ( (deg
`  F )  e.  ( ZZ>= `  (deg `  F
) )  ->  (
(deg `  F )  +  1 )  e.  ( ZZ>= `  (deg `  F
) ) )
118, 9, 103syl 18 . . . . . 6  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  a  e.  CC )  ->  ( (deg `  F
)  +  1 )  e.  ( ZZ>= `  (deg `  F ) ) )
12 simpr 477 . . . . . 6  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  a  e.  CC )  ->  a  e.  CC )
13 eqid 2622 . . . . . . 7  |-  (coeff `  F )  =  (coeff `  F )
14 eqid 2622 . . . . . . 7  |-  (deg `  F )  =  (deg
`  F )
1513, 14coeid3 23996 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  (
(deg `  F )  +  1 )  e.  ( ZZ>= `  (deg `  F
) )  /\  a  e.  CC )  ->  ( F `  a )  =  sum_ b  e.  ( 0 ... ( (deg
`  F )  +  1 ) ) ( ( (coeff `  F
) `  b )  x.  ( a ^ b
) ) )
164, 11, 12, 15syl3anc 1326 . . . . 5  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  a  e.  CC )  ->  ( F `  a
)  =  sum_ b  e.  ( 0 ... (
(deg `  F )  +  1 ) ) ( ( (coeff `  F ) `  b
)  x.  ( a ^ b ) ) )
1716mpteq2dva 4744 . . . 4  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( a  e.  CC  |->  ( F `  a ) )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... ( (deg `  F )  +  1 ) ) ( ( (coeff `  F ) `  b )  x.  (
a ^ b ) ) ) )
183, 17eqtrd 2656 . . 3  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... ( (deg `  F )  +  1 ) ) ( ( (coeff `  F ) `  b )  x.  (
a ^ b ) ) ) )
196nn0cnd 11353 . . . . . . . 8  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  (deg `  F
)  e.  CC )
20 ax-1cn 9994 . . . . . . . 8  |-  1  e.  CC
21 pncan 10287 . . . . . . . 8  |-  ( ( (deg `  F )  e.  CC  /\  1  e.  CC )  ->  (
( (deg `  F
)  +  1 )  -  1 )  =  (deg `  F )
)
2219, 20, 21sylancl 694 . . . . . . 7  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( (
(deg `  F )  +  1 )  - 
1 )  =  (deg
`  F ) )
2322eqcomd 2628 . . . . . 6  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  (deg `  F
)  =  ( ( (deg `  F )  +  1 )  - 
1 ) )
2423oveq2d 6666 . . . . 5  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( 0 ... (deg `  F
) )  =  ( 0 ... ( ( (deg `  F )  +  1 )  - 
1 ) ) )
2524sumeq1d 14431 . . . 4  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  sum_ b  e.  ( 0 ... (deg `  F ) ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( (coeff `  F
) `  ( c  +  1 ) ) ) ) `  b
)  x.  ( a ^ b ) )  =  sum_ b  e.  ( 0 ... ( ( (deg `  F )  +  1 )  - 
1 ) ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( (coeff `  F
) `  ( c  +  1 ) ) ) ) `  b
)  x.  ( a ^ b ) ) )
2625mpteq2dv 4745 . . 3  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... (deg `  F ) ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( (coeff `  F
) `  ( c  +  1 ) ) ) ) `  b
)  x.  ( a ^ b ) ) )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... (
( (deg `  F
)  +  1 )  -  1 ) ) ( ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( (coeff `  F ) `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) ) )
2713coef3 23988 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
2827adantl 482 . . 3  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  (coeff `  F
) : NN0 --> CC )
29 oveq1 6657 . . . . 5  |-  ( c  =  b  ->  (
c  +  1 )  =  ( b  +  1 ) )
3029fveq2d 6195 . . . . 5  |-  ( c  =  b  ->  (
(coeff `  F ) `  ( c  +  1 ) )  =  ( (coeff `  F ) `  ( b  +  1 ) ) )
3129, 30oveq12d 6668 . . . 4  |-  ( c  =  b  ->  (
( c  +  1 )  x.  ( (coeff `  F ) `  (
c  +  1 ) ) )  =  ( ( b  +  1 )  x.  ( (coeff `  F ) `  (
b  +  1 ) ) ) )
3231cbvmptv 4750 . . 3  |-  ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( (coeff `  F ) `  (
c  +  1 ) ) ) )  =  ( b  e.  NN0  |->  ( ( b  +  1 )  x.  (
(coeff `  F ) `  ( b  +  1 ) ) ) )
33 peano2nn0 11333 . . . 4  |-  ( (deg
`  F )  e. 
NN0  ->  ( (deg `  F )  +  1 )  e.  NN0 )
346, 33syl 17 . . 3  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( (deg `  F )  +  1 )  e.  NN0 )
3518, 26, 28, 32, 34dvply1 24039 . 2  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... (deg `  F
) ) ( ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  (
(coeff `  F ) `  ( c  +  1 ) ) ) ) `
 b )  x.  ( a ^ b
) ) ) )
36 cnfldbas 19750 . . . . 5  |-  CC  =  ( Base ` fld )
3736subrgss 18781 . . . 4  |-  ( S  e.  (SubRing ` fld )  ->  S  C_  CC )
3837adantr 481 . . 3  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  S  C_  CC )
39 elfznn0 12433 . . . 4  |-  ( b  e.  ( 0 ... (deg `  F )
)  ->  b  e.  NN0 )
40 simpll 790 . . . . . . 7  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  c  e.  NN0 )  ->  S  e.  (SubRing ` fld ) )
41 zsssubrg 19804 . . . . . . . . 9  |-  ( S  e.  (SubRing ` fld )  ->  ZZ  C_  S )
4241ad2antrr 762 . . . . . . . 8  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  c  e.  NN0 )  ->  ZZ  C_  S )
43 peano2nn0 11333 . . . . . . . . . 10  |-  ( c  e.  NN0  ->  ( c  +  1 )  e. 
NN0 )
4443adantl 482 . . . . . . . . 9  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  NN0 )
4544nn0zd 11480 . . . . . . . 8  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  ZZ )
4642, 45sseldd 3604 . . . . . . 7  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  S )
47 simplr 792 . . . . . . . . 9  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  c  e.  NN0 )  ->  F  e.  (Poly `  S
) )
48 subrgsubg 18786 . . . . . . . . . . 11  |-  ( S  e.  (SubRing ` fld )  ->  S  e.  (SubGrp ` fld ) )
49 cnfld0 19770 . . . . . . . . . . . 12  |-  0  =  ( 0g ` fld )
5049subg0cl 17602 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp ` fld )  ->  0  e.  S )
5148, 50syl 17 . . . . . . . . . 10  |-  ( S  e.  (SubRing ` fld )  ->  0  e.  S )
5251ad2antrr 762 . . . . . . . . 9  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  c  e.  NN0 )  -> 
0  e.  S )
5313coef2 23987 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  0  e.  S )  ->  (coeff `  F ) : NN0 --> S )
5447, 52, 53syl2anc 693 . . . . . . . 8  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  c  e.  NN0 )  -> 
(coeff `  F ) : NN0 --> S )
5554, 44ffvelrnd 6360 . . . . . . 7  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  c  e.  NN0 )  -> 
( (coeff `  F
) `  ( c  +  1 ) )  e.  S )
56 cnfldmul 19752 . . . . . . . 8  |-  x.  =  ( .r ` fld )
5756subrgmcl 18792 . . . . . . 7  |-  ( ( S  e.  (SubRing ` fld )  /\  (
c  +  1 )  e.  S  /\  (
(coeff `  F ) `  ( c  +  1 ) )  e.  S
)  ->  ( (
c  +  1 )  x.  ( (coeff `  F ) `  (
c  +  1 ) ) )  e.  S
)
5840, 46, 55, 57syl3anc 1326 . . . . . 6  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 )  x.  (
(coeff `  F ) `  ( c  +  1 ) ) )  e.  S )
59 eqid 2622 . . . . . 6  |-  ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( (coeff `  F ) `  (
c  +  1 ) ) ) )  =  ( c  e.  NN0  |->  ( ( c  +  1 )  x.  (
(coeff `  F ) `  ( c  +  1 ) ) ) )
6058, 59fmptd 6385 . . . . 5  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( (coeff `  F
) `  ( c  +  1 ) ) ) ) : NN0 --> S )
6160ffvelrnda 6359 . . . 4  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  b  e.  NN0 )  -> 
( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( (coeff `  F
) `  ( c  +  1 ) ) ) ) `  b
)  e.  S )
6239, 61sylan2 491 . . 3  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  b  e.  ( 0 ... (deg `  F
) ) )  -> 
( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( (coeff `  F
) `  ( c  +  1 ) ) ) ) `  b
)  e.  S )
6338, 6, 62elplyd 23958 . 2  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... (deg `  F ) ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( (coeff `  F
) `  ( c  +  1 ) ) ) ) `  b
)  x.  ( a ^ b ) ) )  e.  (Poly `  S ) )
6435, 63eqeltrd 2701 1  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  e.  (Poly `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   sum_csu 14416  SubGrpcsubg 17588  SubRingcsubrg 18776  ℂfldccnfld 19746    _D cdv 23627  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  dvply2  24041  dvnply2  24042
  Copyright terms: Public domain W3C validator