MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanadd Structured version   Visualization version   Unicode version

Theorem tanadd 14897
Description: Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanadd  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( tan `  ( A  +  B
) )  =  ( ( ( tan `  A
)  +  ( tan `  B ) )  / 
( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) ) )

Proof of Theorem tanadd
StepHypRef Expression
1 addcl 10018 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
21adantr 481 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( A  +  B )  e.  CC )
3 simpr3 1069 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( cos `  ( A  +  B
) )  =/=  0
)
4 tanval 14858 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  ( cos `  ( A  +  B ) )  =/=  0 )  -> 
( tan `  ( A  +  B )
)  =  ( ( sin `  ( A  +  B ) )  /  ( cos `  ( A  +  B )
) ) )
52, 3, 4syl2anc 693 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( tan `  ( A  +  B
) )  =  ( ( sin `  ( A  +  B )
)  /  ( cos `  ( A  +  B
) ) ) )
6 sinadd 14894 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )
76adantr 481 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( sin `  ( A  +  B
) )  =  ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )
8 cosadd 14895 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
98adantr 481 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( cos `  ( A  +  B
) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
107, 9oveq12d 6668 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( sin `  ( A  +  B ) )  / 
( cos `  ( A  +  B )
) )  =  ( ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) )  /  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) ) )
11 simpll 790 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  A  e.  CC )
1211coscld 14861 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( cos `  A )  e.  CC )
13 simplr 792 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  B  e.  CC )
1413coscld 14861 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( cos `  B )  e.  CC )
1512, 14mulcld 10060 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( cos `  A )  x.  ( cos `  B
) )  e.  CC )
16 simpr1 1067 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( cos `  A )  =/=  0
)
1711, 16tancld 14862 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( tan `  A )  e.  CC )
18 simpr2 1068 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( cos `  B )  =/=  0
)
1913, 18tancld 14862 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( tan `  B )  e.  CC )
2015, 17, 19adddid 10064 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  +  ( tan `  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  A
) )  +  ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) ) ) )
2112, 14, 17mul32d 10246 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  A
) )  =  ( ( ( cos `  A
)  x.  ( tan `  A ) )  x.  ( cos `  B
) ) )
22 tanval 14858 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  =  ( ( sin `  A )  /  ( cos `  A
) ) )
2311, 16, 22syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
2423oveq2d 6666 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( cos `  A )  x.  ( tan `  A
) )  =  ( ( cos `  A
)  x.  ( ( sin `  A )  /  ( cos `  A
) ) ) )
2511sincld 14860 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( sin `  A )  e.  CC )
2625, 12, 16divcan2d 10803 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( cos `  A )  x.  ( ( sin `  A
)  /  ( cos `  A ) ) )  =  ( sin `  A
) )
2724, 26eqtrd 2656 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( cos `  A )  x.  ( tan `  A
) )  =  ( sin `  A ) )
2827oveq1d 6665 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( tan `  A ) )  x.  ( cos `  B
) )  =  ( ( sin `  A
)  x.  ( cos `  B ) ) )
2921, 28eqtrd 2656 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  A
) )  =  ( ( sin `  A
)  x.  ( cos `  B ) ) )
3012, 14, 19mulassd 10063 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) )  =  ( ( cos `  A
)  x.  ( ( cos `  B )  x.  ( tan `  B
) ) ) )
31 tanval 14858 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  ( cos `  B )  =/=  0 )  -> 
( tan `  B
)  =  ( ( sin `  B )  /  ( cos `  B
) ) )
3213, 18, 31syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( tan `  B )  =  ( ( sin `  B
)  /  ( cos `  B ) ) )
3332oveq2d 6666 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( cos `  B )  x.  ( tan `  B
) )  =  ( ( cos `  B
)  x.  ( ( sin `  B )  /  ( cos `  B
) ) ) )
3413sincld 14860 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( sin `  B )  e.  CC )
3534, 14, 18divcan2d 10803 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( cos `  B )  x.  ( ( sin `  B
)  /  ( cos `  B ) ) )  =  ( sin `  B
) )
3633, 35eqtrd 2656 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( cos `  B )  x.  ( tan `  B
) )  =  ( sin `  B ) )
3736oveq2d 6666 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( cos `  A )  x.  ( ( cos `  B
)  x.  ( tan `  B ) ) )  =  ( ( cos `  A )  x.  ( sin `  B ) ) )
3830, 37eqtrd 2656 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) )  =  ( ( cos `  A
)  x.  ( sin `  B ) ) )
3929, 38oveq12d 6668 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  A
) )  +  ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) ) )  =  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) ) )
4020, 39eqtrd 2656 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  +  ( tan `  B ) ) )  =  ( ( ( sin `  A )  x.  ( cos `  B
) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )
41 1cnd 10056 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  1  e.  CC )
4217, 19mulcld 10060 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( tan `  A )  x.  ( tan `  B
) )  e.  CC )
4315, 41, 42subdid 10486 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  ( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  1 )  -  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  x.  ( tan `  B ) ) ) ) )
4415mulid1d 10057 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  1 )  =  ( ( cos `  A
)  x.  ( cos `  B ) ) )
4512, 14, 17, 19mul4d 10248 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  x.  ( tan `  B ) ) )  =  ( ( ( cos `  A )  x.  ( tan `  A
) )  x.  (
( cos `  B
)  x.  ( tan `  B ) ) ) )
4627, 36oveq12d 6668 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( tan `  A ) )  x.  ( ( cos `  B
)  x.  ( tan `  B ) ) )  =  ( ( sin `  A )  x.  ( sin `  B ) ) )
4745, 46eqtrd 2656 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  x.  ( tan `  B ) ) )  =  ( ( sin `  A )  x.  ( sin `  B ) ) )
4844, 47oveq12d 6668 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  1 )  -  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  x.  ( tan `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
4943, 48eqtrd 2656 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( cos `  A
)  x.  ( cos `  B ) )  x.  ( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
5040, 49oveq12d 6668 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  +  ( tan `  B ) ) )  /  ( ( ( cos `  A )  x.  ( cos `  B
) )  x.  (
1  -  ( ( tan `  A )  x.  ( tan `  B
) ) ) ) )  =  ( ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) )  /  ( ( ( cos `  A )  x.  ( cos `  B
) )  -  (
( sin `  A
)  x.  ( sin `  B ) ) ) ) )
5117, 19addcld 10059 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( tan `  A )  +  ( tan `  B
) )  e.  CC )
52 ax-1cn 9994 . . . . 5  |-  1  e.  CC
53 subcl 10280 . . . . 5  |-  ( ( 1  e.  CC  /\  ( ( tan `  A
)  x.  ( tan `  B ) )  e.  CC )  ->  (
1  -  ( ( tan `  A )  x.  ( tan `  B
) ) )  e.  CC )
5452, 42, 53sylancr 695 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( 1  -  ( ( tan `  A )  x.  ( tan `  B ) ) )  e.  CC )
55 tanaddlem 14896 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0 ) )  ->  ( ( cos `  ( A  +  B ) )  =/=  0  <->  ( ( tan `  A )  x.  ( tan `  B ) )  =/=  1 ) )
56553adantr3 1222 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( cos `  ( A  +  B ) )  =/=  0  <->  ( ( tan `  A )  x.  ( tan `  B ) )  =/=  1 ) )
573, 56mpbid 222 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( tan `  A )  x.  ( tan `  B
) )  =/=  1
)
5857necomd 2849 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  1  =/=  ( ( tan `  A
)  x.  ( tan `  B ) ) )
59 subeq0 10307 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( ( tan `  A
)  x.  ( tan `  B ) )  e.  CC )  ->  (
( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) )  =  0  <->  1  =  ( ( tan `  A
)  x.  ( tan `  B ) ) ) )
6059necon3bid 2838 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( ( tan `  A
)  x.  ( tan `  B ) )  e.  CC )  ->  (
( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) )  =/=  0  <->  1  =/=  ( ( tan `  A
)  x.  ( tan `  B ) ) ) )
6152, 42, 60sylancr 695 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
1  -  ( ( tan `  A )  x.  ( tan `  B
) ) )  =/=  0  <->  1  =/=  (
( tan `  A
)  x.  ( tan `  B ) ) ) )
6258, 61mpbird 247 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( 1  -  ( ( tan `  A )  x.  ( tan `  B ) ) )  =/=  0 )
6312, 14, 16, 18mulne0d 10679 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( ( cos `  A )  x.  ( cos `  B
) )  =/=  0
)
6451, 54, 15, 62, 63divcan5d 10827 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  +  ( tan `  B ) ) )  /  ( ( ( cos `  A )  x.  ( cos `  B
) )  x.  (
1  -  ( ( tan `  A )  x.  ( tan `  B
) ) ) ) )  =  ( ( ( tan `  A
)  +  ( tan `  B ) )  / 
( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) ) )
6510, 50, 643eqtr2rd 2663 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( (
( tan `  A
)  +  ( tan `  B ) )  / 
( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) )  =  ( ( sin `  ( A  +  B ) )  /  ( cos `  ( A  +  B )
) ) )
665, 65eqtr4d 2659 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A )  =/=  0  /\  ( cos `  B
)  =/=  0  /\  ( cos `  ( A  +  B )
)  =/=  0 ) )  ->  ( tan `  ( A  +  B
) )  =  ( ( ( tan `  A
)  +  ( tan `  B ) )  / 
( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   sincsin 14794   cosccos 14795   tanctan 14796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802
This theorem is referenced by:  tanregt0  24285
  Copyright terms: Public domain W3C validator