![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrsum | Structured version Visualization version GIF version |
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchrsum.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrsum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrsum.d | ⊢ 𝐷 = (Base‘𝐺) |
dchrsum.1 | ⊢ 1 = (0g‘𝐺) |
dchrsum.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrsum.b | ⊢ 𝐵 = (Base‘𝑍) |
Ref | Expression |
---|---|
dchrsum | ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrsum.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑍) | |
2 | eqid 2622 | . . . . 5 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
3 | 1, 2 | unitss 18660 | . . . 4 ⊢ (Unit‘𝑍) ⊆ 𝐵 |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (Unit‘𝑍) ⊆ 𝐵) |
5 | dchrsum.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
6 | dchrsum.z | . . . . 5 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
7 | dchrsum.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
8 | dchrsum.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
9 | 5, 6, 7, 1, 8 | dchrf 24967 | . . . 4 ⊢ (𝜑 → 𝑋:𝐵⟶ℂ) |
10 | 3 | sseli 3599 | . . . 4 ⊢ (𝑎 ∈ (Unit‘𝑍) → 𝑎 ∈ 𝐵) |
11 | ffvelrn 6357 | . . . 4 ⊢ ((𝑋:𝐵⟶ℂ ∧ 𝑎 ∈ 𝐵) → (𝑋‘𝑎) ∈ ℂ) | |
12 | 9, 10, 11 | syl2an 494 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Unit‘𝑍)) → (𝑋‘𝑎) ∈ ℂ) |
13 | eldif 3584 | . . . 4 ⊢ (𝑎 ∈ (𝐵 ∖ (Unit‘𝑍)) ↔ (𝑎 ∈ 𝐵 ∧ ¬ 𝑎 ∈ (Unit‘𝑍))) | |
14 | 8 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐷) |
15 | simpr 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
16 | 5, 6, 7, 1, 2, 14, 15 | dchrn0 24975 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) ≠ 0 ↔ 𝑎 ∈ (Unit‘𝑍))) |
17 | 16 | biimpd 219 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) ≠ 0 → 𝑎 ∈ (Unit‘𝑍))) |
18 | 17 | necon1bd 2812 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (¬ 𝑎 ∈ (Unit‘𝑍) → (𝑋‘𝑎) = 0)) |
19 | 18 | impr 649 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ ¬ 𝑎 ∈ (Unit‘𝑍))) → (𝑋‘𝑎) = 0) |
20 | 13, 19 | sylan2b 492 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐵 ∖ (Unit‘𝑍))) → (𝑋‘𝑎) = 0) |
21 | 5, 7 | dchrrcl 24965 | . . . 4 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
22 | 6, 1 | znfi 19908 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) |
23 | 8, 21, 22 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) |
24 | 4, 12, 20, 23 | fsumss 14456 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (Unit‘𝑍)(𝑋‘𝑎) = Σ𝑎 ∈ 𝐵 (𝑋‘𝑎)) |
25 | dchrsum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
26 | 5, 6, 7, 25, 8, 2 | dchrsum2 24993 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (Unit‘𝑍)(𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
27 | 24, 26 | eqtr3d 2658 | 1 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∖ cdif 3571 ⊆ wss 3574 ifcif 4086 ⟶wf 5884 ‘cfv 5888 Fincfn 7955 ℂcc 9934 0cc0 9936 ℕcn 11020 Σcsu 14416 ϕcphi 15469 Basecbs 15857 0gc0g 16100 Unitcui 18639 ℤ/nℤczn 19851 DChrcdchr 24957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-dvds 14984 df-gcd 15217 df-phi 15471 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-imas 16168 df-qus 16169 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-nsg 17592 df-eqg 17593 df-ghm 17658 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-rnghom 18715 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-cnfld 19747 df-zring 19819 df-zrh 19852 df-zn 19855 df-dchr 24958 |
This theorem is referenced by: dchrhash 24996 dchr2sum 24998 dchrisumlem1 25178 |
Copyright terms: Public domain | W3C validator |