MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrhash Structured version   Visualization version   GIF version

Theorem dchrhash 24996
Description: There are exactly ϕ(𝑁) Dirichlet characters modulo 𝑁. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sumdchr.g 𝐺 = (DChr‘𝑁)
sumdchr.d 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrhash (𝑁 ∈ ℕ → (#‘𝐷) = (ϕ‘𝑁))

Proof of Theorem dchrhash
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
2 eqid 2622 . . . . . 6 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
31, 2znfi 19908 . . . . 5 (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)
4 sumdchr.g . . . . . 6 𝐺 = (DChr‘𝑁)
5 sumdchr.d . . . . . 6 𝐷 = (Base‘𝐺)
64, 5dchrfi 24980 . . . . 5 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
7 simprr 796 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → 𝑥𝐷)
84, 1, 5, 2, 7dchrf 24967 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9 simprl 794 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)))
108, 9ffvelrnd 6360 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → (𝑥𝑎) ∈ ℂ)
113, 6, 10fsumcom 14507 . . . 4 (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥𝐷 (𝑥𝑎) = Σ𝑥𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎))
12 eqid 2622 . . . . . . 7 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
13 simpl 473 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ)
14 simpr 477 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)))
154, 5, 1, 12, 2, 13, 14sumdchr2 24995 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥𝐷 (𝑥𝑎) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (#‘𝐷), 0))
16 velsn 4193 . . . . . . 7 (𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁)))
17 ifbi 4107 . . . . . . 7 ((𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (#‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (#‘𝐷), 0))
1816, 17mp1i 13 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (#‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (#‘𝐷), 0))
1915, 18eqtr4d 2659 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥𝐷 (𝑥𝑎) = if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (#‘𝐷), 0))
2019sumeq2dv 14433 . . . 4 (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥𝐷 (𝑥𝑎) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (#‘𝐷), 0))
21 eqid 2622 . . . . . . 7 (0g𝐺) = (0g𝐺)
22 simpr 477 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → 𝑥𝐷)
234, 1, 5, 21, 22, 2dchrsum 24994 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎) = if(𝑥 = (0g𝐺), (ϕ‘𝑁), 0))
24 velsn 4193 . . . . . . 7 (𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺))
25 ifbi 4107 . . . . . . 7 ((𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺)) → if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g𝐺), (ϕ‘𝑁), 0))
2624, 25mp1i 13 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g𝐺), (ϕ‘𝑁), 0))
2723, 26eqtr4d 2659 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎) = if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
2827sumeq2dv 14433 . . . 4 (𝑁 ∈ ℕ → Σ𝑥𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
2911, 20, 283eqtr3d 2664 . . 3 (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (#‘𝐷), 0) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
30 nnnn0 11299 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
311zncrng 19893 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
32 crngring 18558 . . . . . 6 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
332, 12ringidcl 18568 . . . . . 6 ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3430, 31, 32, 334syl 19 . . . . 5 (𝑁 ∈ ℕ → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3534snssd 4340 . . . 4 (𝑁 ∈ ℕ → {(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁)))
36 hashcl 13147 . . . . . 6 (𝐷 ∈ Fin → (#‘𝐷) ∈ ℕ0)
37 nn0cn 11302 . . . . . 6 ((#‘𝐷) ∈ ℕ0 → (#‘𝐷) ∈ ℂ)
386, 36, 373syl 18 . . . . 5 (𝑁 ∈ ℕ → (#‘𝐷) ∈ ℂ)
3938ralrimivw 2967 . . . 4 (𝑁 ∈ ℕ → ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (#‘𝐷) ∈ ℂ)
403olcd 408 . . . 4 (𝑁 ∈ ℕ → ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin))
41 sumss2 14457 . . . 4 ((({(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (#‘𝐷) ∈ ℂ) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (#‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (#‘𝐷), 0))
4235, 39, 40, 41syl21anc 1325 . . 3 (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (#‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (#‘𝐷), 0))
434dchrabl 24979 . . . . . 6 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
44 ablgrp 18198 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
455, 21grpidcl 17450 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐷)
4643, 44, 453syl 18 . . . . 5 (𝑁 ∈ ℕ → (0g𝐺) ∈ 𝐷)
4746snssd 4340 . . . 4 (𝑁 ∈ ℕ → {(0g𝐺)} ⊆ 𝐷)
48 phicl 15474 . . . . . 6 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
4948nncnd 11036 . . . . 5 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℂ)
5049ralrimivw 2967 . . . 4 (𝑁 ∈ ℕ → ∀𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) ∈ ℂ)
516olcd 408 . . . 4 (𝑁 ∈ ℕ → (𝐷 ⊆ (ℤ‘0) ∨ 𝐷 ∈ Fin))
52 sumss2 14457 . . . 4 ((({(0g𝐺)} ⊆ 𝐷 ∧ ∀𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) ∈ ℂ) ∧ (𝐷 ⊆ (ℤ‘0) ∨ 𝐷 ∈ Fin)) → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
5347, 50, 51, 52syl21anc 1325 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
5429, 42, 533eqtr4d 2666 . 2 (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (#‘𝐷) = Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁))
55 eqidd 2623 . . . 4 (𝑎 = (1r‘(ℤ/nℤ‘𝑁)) → (#‘𝐷) = (#‘𝐷))
5655sumsn 14475 . . 3 (((1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (#‘𝐷) ∈ ℂ) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (#‘𝐷) = (#‘𝐷))
5734, 38, 56syl2anc 693 . 2 (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (#‘𝐷) = (#‘𝐷))
58 eqidd 2623 . . . 4 (𝑥 = (0g𝐺) → (ϕ‘𝑁) = (ϕ‘𝑁))
5958sumsn 14475 . . 3 (((0g𝐺) ∈ 𝐷 ∧ (ϕ‘𝑁) ∈ ℂ) → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁))
6046, 49, 59syl2anc 693 . 2 (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁))
6154, 57, 603eqtr3d 2664 1 (𝑁 ∈ ℕ → (#‘𝐷) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  ifcif 4086  {csn 4177  cfv 5888  Fincfn 7955  cc 9934  0cc0 9936  cn 11020  0cn0 11292  cuz 11687  #chash 13117  Σcsu 14416  ϕcphi 15469  Basecbs 15857  0gc0g 16100  Grpcgrp 17422  Abelcabl 18194  1rcur 18501  Ringcrg 18547  CRingccrg 18548  ℤ/nczn 19851  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-gim 17701  df-ga 17723  df-cntz 17750  df-oppg 17776  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-cyg 18280  df-dprd 18394  df-dpj 18395  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046  df-log 24303  df-cxp 24304  df-dchr 24958
This theorem is referenced by:  sumdchr  24997
  Copyright terms: Public domain W3C validator