MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fislw Structured version   Visualization version   GIF version

Theorem fislw 18040
Description: The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
fislw.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
fislw ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))))

Proof of Theorem fislw
Dummy variables 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝐻 ∈ (𝑃 pSyl 𝐺))
2 slwsubg 18025 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
31, 2syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝐻 ∈ (SubGrp‘𝐺))
4 fislw.1 . . . 4 𝑋 = (Base‘𝐺)
5 simpl2 1065 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
64, 5, 1slwhash 18039 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))
73, 6jca 554 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋)))))
8 simpl3 1066 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → 𝑃 ∈ ℙ)
9 simprl 794 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺))
10 simpl2 1065 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → 𝑋 ∈ Fin)
1110adantr 481 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑋 ∈ Fin)
12 simprl 794 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ∈ (SubGrp‘𝐺))
134subgss 17595 . . . . . . . . 9 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘𝑋)
1412, 13syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘𝑋)
15 ssfi 8180 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑘𝑋) → 𝑘 ∈ Fin)
1611, 14, 15syl2anc 693 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ∈ Fin)
17 simprrl 804 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
18 ssdomg 8001 . . . . . . . . 9 (𝑘 ∈ Fin → (𝐻𝑘𝐻𝑘))
1916, 17, 18sylc 65 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
20 simprrr 805 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 pGrp (𝐺s 𝑘))
21 eqid 2622 . . . . . . . . . . . . . . . . . 18 (𝐺s 𝑘) = (𝐺s 𝑘)
2221subggrp 17597 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (SubGrp‘𝐺) → (𝐺s 𝑘) ∈ Grp)
2312, 22syl 17 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝐺s 𝑘) ∈ Grp)
2421subgbas 17598 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘 = (Base‘(𝐺s 𝑘)))
2512, 24syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 = (Base‘(𝐺s 𝑘)))
2625, 16eqeltrrd 2702 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (Base‘(𝐺s 𝑘)) ∈ Fin)
27 eqid 2622 . . . . . . . . . . . . . . . . 17 (Base‘(𝐺s 𝑘)) = (Base‘(𝐺s 𝑘))
2827pgpfi 18020 . . . . . . . . . . . . . . . 16 (((𝐺s 𝑘) ∈ Grp ∧ (Base‘(𝐺s 𝑘)) ∈ Fin) → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))))
2923, 26, 28syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))))
3020, 29mpbid 222 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
3130simpld 475 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℙ)
32 prmnn 15388 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3331, 32syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℕ)
3433nnred 11035 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℝ)
3533nnge1d 11063 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 1 ≤ 𝑃)
36 eqid 2622 . . . . . . . . . . . . . . . . . 18 (0g𝐺) = (0g𝐺)
3736subg0cl 17602 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑘)
3812, 37syl 17 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (0g𝐺) ∈ 𝑘)
39 ne0i 3921 . . . . . . . . . . . . . . . 16 ((0g𝐺) ∈ 𝑘𝑘 ≠ ∅)
4038, 39syl 17 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ≠ ∅)
41 hashnncl 13157 . . . . . . . . . . . . . . . 16 (𝑘 ∈ Fin → ((#‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
4216, 41syl 17 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((#‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
4340, 42mpbird 247 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (#‘𝑘) ∈ ℕ)
4431, 43pccld 15555 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (#‘𝑘)) ∈ ℕ0)
4544nn0zd 11480 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (#‘𝑘)) ∈ ℤ)
46 simpl1 1064 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → 𝐺 ∈ Grp)
474grpbn0 17451 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4846, 47syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → 𝑋 ≠ ∅)
49 hashnncl 13157 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
5010, 49syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
5148, 50mpbird 247 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → (#‘𝑋) ∈ ℕ)
528, 51pccld 15555 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → (𝑃 pCnt (#‘𝑋)) ∈ ℕ0)
5352adantr 481 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (#‘𝑋)) ∈ ℕ0)
5453nn0zd 11480 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (#‘𝑋)) ∈ ℤ)
554lagsubg 17656 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘𝑘) ∥ (#‘𝑋))
5612, 11, 55syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (#‘𝑘) ∥ (#‘𝑋))
5743nnzd 11481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (#‘𝑘) ∈ ℤ)
5851adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (#‘𝑋) ∈ ℕ)
5958nnzd 11481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (#‘𝑋) ∈ ℤ)
60 pc2dvds 15583 . . . . . . . . . . . . . . 15 (((#‘𝑘) ∈ ℤ ∧ (#‘𝑋) ∈ ℤ) → ((#‘𝑘) ∥ (#‘𝑋) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (#‘𝑘)) ≤ (𝑝 pCnt (#‘𝑋))))
6157, 59, 60syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((#‘𝑘) ∥ (#‘𝑋) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (#‘𝑘)) ≤ (𝑝 pCnt (#‘𝑋))))
6256, 61mpbid 222 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∀𝑝 ∈ ℙ (𝑝 pCnt (#‘𝑘)) ≤ (𝑝 pCnt (#‘𝑋)))
63 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑝 = 𝑃 → (𝑝 pCnt (#‘𝑘)) = (𝑃 pCnt (#‘𝑘)))
64 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑝 = 𝑃 → (𝑝 pCnt (#‘𝑋)) = (𝑃 pCnt (#‘𝑋)))
6563, 64breq12d 4666 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → ((𝑝 pCnt (#‘𝑘)) ≤ (𝑝 pCnt (#‘𝑋)) ↔ (𝑃 pCnt (#‘𝑘)) ≤ (𝑃 pCnt (#‘𝑋))))
6665rspcv 3305 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝 pCnt (#‘𝑘)) ≤ (𝑝 pCnt (#‘𝑋)) → (𝑃 pCnt (#‘𝑘)) ≤ (𝑃 pCnt (#‘𝑋))))
6731, 62, 66sylc 65 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (#‘𝑘)) ≤ (𝑃 pCnt (#‘𝑋)))
68 eluz2 11693 . . . . . . . . . . . 12 ((𝑃 pCnt (#‘𝑋)) ∈ (ℤ‘(𝑃 pCnt (#‘𝑘))) ↔ ((𝑃 pCnt (#‘𝑘)) ∈ ℤ ∧ (𝑃 pCnt (#‘𝑋)) ∈ ℤ ∧ (𝑃 pCnt (#‘𝑘)) ≤ (𝑃 pCnt (#‘𝑋))))
6945, 54, 67, 68syl3anbrc 1246 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (#‘𝑋)) ∈ (ℤ‘(𝑃 pCnt (#‘𝑘))))
7034, 35, 69leexp2ad 13041 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃↑(𝑃 pCnt (#‘𝑘))) ≤ (𝑃↑(𝑃 pCnt (#‘𝑋))))
7130simprd 479 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∃𝑛 ∈ ℕ0 (#‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))
7225fveq2d 6195 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (#‘𝑘) = (#‘(Base‘(𝐺s 𝑘))))
7372eqeq1d 2624 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((#‘𝑘) = (𝑃𝑛) ↔ (#‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
7473rexbidv 3052 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (∃𝑛 ∈ ℕ0 (#‘𝑘) = (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (#‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
7571, 74mpbird 247 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∃𝑛 ∈ ℕ0 (#‘𝑘) = (𝑃𝑛))
76 pcprmpw 15587 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (#‘𝑘) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (#‘𝑘) = (𝑃𝑛) ↔ (#‘𝑘) = (𝑃↑(𝑃 pCnt (#‘𝑘)))))
7731, 43, 76syl2anc 693 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (∃𝑛 ∈ ℕ0 (#‘𝑘) = (𝑃𝑛) ↔ (#‘𝑘) = (𝑃↑(𝑃 pCnt (#‘𝑘)))))
7875, 77mpbid 222 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (#‘𝑘) = (𝑃↑(𝑃 pCnt (#‘𝑘))))
79 simplrr 801 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))
8070, 78, 793brtr4d 4685 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (#‘𝑘) ≤ (#‘𝐻))
814subgss 17595 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
8281ad2antrl 764 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → 𝐻𝑋)
83 ssfi 8180 . . . . . . . . . . . 12 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
8410, 82, 83syl2anc 693 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → 𝐻 ∈ Fin)
8584adantr 481 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻 ∈ Fin)
86 hashdom 13168 . . . . . . . . . 10 ((𝑘 ∈ Fin ∧ 𝐻 ∈ Fin) → ((#‘𝑘) ≤ (#‘𝐻) ↔ 𝑘𝐻))
8716, 85, 86syl2anc 693 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((#‘𝑘) ≤ (#‘𝐻) ↔ 𝑘𝐻))
8880, 87mpbid 222 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘𝐻)
89 sbth 8080 . . . . . . . 8 ((𝐻𝑘𝑘𝐻) → 𝐻𝑘)
9019, 88, 89syl2anc 693 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
91 fisseneq 8171 . . . . . . 7 ((𝑘 ∈ Fin ∧ 𝐻𝑘𝐻𝑘) → 𝐻 = 𝑘)
9216, 17, 90, 91syl3anc 1326 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻 = 𝑘)
9392expr 643 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) → 𝐻 = 𝑘))
94 eqid 2622 . . . . . . . . . . . . 13 (𝐺s 𝐻) = (𝐺s 𝐻)
9594subgbas 17598 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 = (Base‘(𝐺s 𝐻)))
9695ad2antrl 764 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → 𝐻 = (Base‘(𝐺s 𝐻)))
9796fveq2d 6195 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → (#‘𝐻) = (#‘(Base‘(𝐺s 𝐻))))
98 simprr 796 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))
9997, 98eqtr3d 2658 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → (#‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (#‘𝑋))))
100 oveq2 6658 . . . . . . . . . . 11 (𝑛 = (𝑃 pCnt (#‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (#‘𝑋))))
101100eqeq2d 2632 . . . . . . . . . 10 (𝑛 = (𝑃 pCnt (#‘𝑋)) → ((#‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛) ↔ (#‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (#‘𝑋)))))
102101rspcev 3309 . . . . . . . . 9 (((𝑃 pCnt (#‘𝑋)) ∈ ℕ0 ∧ (#‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (#‘𝑋)))) → ∃𝑛 ∈ ℕ0 (#‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))
10352, 99, 102syl2anc 693 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → ∃𝑛 ∈ ℕ0 (#‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))
10494subggrp 17597 . . . . . . . . . 10 (𝐻 ∈ (SubGrp‘𝐺) → (𝐺s 𝐻) ∈ Grp)
105104ad2antrl 764 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → (𝐺s 𝐻) ∈ Grp)
10696, 84eqeltrrd 2702 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → (Base‘(𝐺s 𝐻)) ∈ Fin)
107 eqid 2622 . . . . . . . . . 10 (Base‘(𝐺s 𝐻)) = (Base‘(𝐺s 𝐻))
108107pgpfi 18020 . . . . . . . . 9 (((𝐺s 𝐻) ∈ Grp ∧ (Base‘(𝐺s 𝐻)) ∈ Fin) → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))))
109105, 106, 108syl2anc 693 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))))
1108, 103, 109mpbir2and 957 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → 𝑃 pGrp (𝐺s 𝐻))
111110adantr 481 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝐻))
112 oveq2 6658 . . . . . . . 8 (𝐻 = 𝑘 → (𝐺s 𝐻) = (𝐺s 𝑘))
113112breq2d 4665 . . . . . . 7 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝐻) ↔ 𝑃 pGrp (𝐺s 𝑘)))
114 eqimss 3657 . . . . . . . 8 (𝐻 = 𝑘𝐻𝑘)
115114biantrurd 529 . . . . . . 7 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
116113, 115bitrd 268 . . . . . 6 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
117111, 116syl5ibcom 235 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → (𝐻 = 𝑘 → (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
11893, 117impbid 202 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
119118ralrimiva 2966 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
120 isslw 18023 . . 3 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
1218, 9, 119, 120syl3anbrc 1246 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))) → 𝐻 ∈ (𝑃 pSyl 𝐺))
1227, 121impbida 877 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (#‘𝐻) = (𝑃↑(𝑃 pCnt (#‘𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  cen 7952  cdom 7953  Fincfn 7955  cle 10075  cn 11020  0cn0 11292  cz 11377  cuz 11687  cexp 12860  #chash 13117  cdvds 14983  cprime 15385   pCnt cpc 15541  Basecbs 15857  s cress 15858  0gc0g 16100  Grpcgrp 17422  SubGrpcsubg 17588   pGrp cpgp 17946   pSyl cslw 17947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ghm 17658  df-ga 17723  df-od 17948  df-pgp 17950  df-slw 17951
This theorem is referenced by:  sylow3lem1  18042
  Copyright terms: Public domain W3C validator