Proof of Theorem fourierdlem11
| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem11.q |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 2 | | fourierdlem11.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | | fourierdlem11.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 4 | 3 | fourierdlem2 40326 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 5 | 2, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 6 | 1, 5 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 7 | 6 | simprd 479 |
. . . . 5
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
| 8 | 7 | simpld 475 |
. . . 4
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
| 9 | 8 | simpld 475 |
. . 3
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
| 10 | 6 | simpld 475 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑𝑚
(0...𝑀))) |
| 11 | | elmapi 7879 |
. . . . 5
⊢ (𝑄 ∈ (ℝ
↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 13 | | 0red 10041 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ) |
| 14 | 13 | leidd 10594 |
. . . . 5
⊢ (𝜑 → 0 ≤ 0) |
| 15 | 2 | nnred 11035 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 16 | 2 | nngt0d 11064 |
. . . . . 6
⊢ (𝜑 → 0 < 𝑀) |
| 17 | 13, 15, 16 | ltled 10185 |
. . . . 5
⊢ (𝜑 → 0 ≤ 𝑀) |
| 18 | | 0zd 11389 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℤ) |
| 19 | 2 | nnzd 11481 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 20 | | elfz 12332 |
. . . . . 6
⊢ ((0
∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0...𝑀) ↔ (0 ≤ 0 ∧ 0 ≤
𝑀))) |
| 21 | 18, 18, 19, 20 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → (0 ∈ (0...𝑀) ↔ (0 ≤ 0 ∧ 0 ≤
𝑀))) |
| 22 | 14, 17, 21 | mpbir2and 957 |
. . . 4
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 23 | 12, 22 | ffvelrnd 6360 |
. . 3
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
| 24 | 9, 23 | eqeltrrd 2702 |
. 2
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 25 | 8 | simprd 479 |
. . 3
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
| 26 | 15 | leidd 10594 |
. . . . 5
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
| 27 | | elfz 12332 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (𝑀 ∈
(0...𝑀) ↔ (0 ≤
𝑀 ∧ 𝑀 ≤ 𝑀))) |
| 28 | 19, 18, 19, 27 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ (0...𝑀) ↔ (0 ≤ 𝑀 ∧ 𝑀 ≤ 𝑀))) |
| 29 | 17, 26, 28 | mpbir2and 957 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
| 30 | 12, 29 | ffvelrnd 6360 |
. . 3
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
| 31 | 25, 30 | eqeltrrd 2702 |
. 2
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 32 | | 0le1 10551 |
. . . . . 6
⊢ 0 ≤
1 |
| 33 | 32 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 ≤ 1) |
| 34 | 2 | nnge1d 11063 |
. . . . 5
⊢ (𝜑 → 1 ≤ 𝑀) |
| 35 | | 1zzd 11408 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
| 36 | | elfz 12332 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ∈ (0...𝑀) ↔ (0 ≤ 1 ∧ 1 ≤
𝑀))) |
| 37 | 35, 18, 19, 36 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → (1 ∈ (0...𝑀) ↔ (0 ≤ 1 ∧ 1 ≤
𝑀))) |
| 38 | 33, 34, 37 | mpbir2and 957 |
. . . 4
⊢ (𝜑 → 1 ∈ (0...𝑀)) |
| 39 | 12, 38 | ffvelrnd 6360 |
. . 3
⊢ (𝜑 → (𝑄‘1) ∈ ℝ) |
| 40 | | elfzo 12472 |
. . . . . . 7
⊢ ((0
∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 <
𝑀))) |
| 41 | 18, 18, 19, 40 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 <
𝑀))) |
| 42 | 14, 16, 41 | mpbir2and 957 |
. . . . 5
⊢ (𝜑 → 0 ∈ (0..^𝑀)) |
| 43 | | 0re 10040 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 44 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀))) |
| 45 | 44 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑖 = 0 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀)))) |
| 46 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
| 47 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) |
| 48 | 47 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1))) |
| 49 | 46, 48 | breq12d 4666 |
. . . . . . . 8
⊢ (𝑖 = 0 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1)))) |
| 50 | 45, 49 | imbi12d 334 |
. . . . . . 7
⊢ (𝑖 = 0 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))) |
| 51 | 7 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 52 | 51 | r19.21bi 2932 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 53 | 50, 52 | vtoclg 3266 |
. . . . . 6
⊢ (0 ∈
ℝ → ((𝜑 ∧ 0
∈ (0..^𝑀)) →
(𝑄‘0) < (𝑄‘(0 +
1)))) |
| 54 | 43, 53 | ax-mp 5 |
. . . . 5
⊢ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))) |
| 55 | 42, 54 | mpdan 702 |
. . . 4
⊢ (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1))) |
| 56 | | 0p1e1 11132 |
. . . . . 6
⊢ (0 + 1) =
1 |
| 57 | 56 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0 + 1) =
1) |
| 58 | 57 | fveq2d 6195 |
. . . 4
⊢ (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1)) |
| 59 | 55, 9, 58 | 3brtr3d 4684 |
. . 3
⊢ (𝜑 → 𝐴 < (𝑄‘1)) |
| 60 | | nnuz 11723 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
| 61 | 2, 60 | syl6eleq 2711 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 62 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 63 | | 0red 10041 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ) |
| 64 | | elfzelz 12342 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ) |
| 65 | 64 | zred 11482 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ) |
| 66 | | 1red 10055 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ) |
| 67 | | 0lt1 10550 |
. . . . . . . . . . 11
⊢ 0 <
1 |
| 68 | 67 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑀) → 0 < 1) |
| 69 | | elfzle1 12344 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖) |
| 70 | 63, 66, 65, 68, 69 | ltletrd 10197 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑀) → 0 < 𝑖) |
| 71 | 63, 65, 70 | ltled 10185 |
. . . . . . . 8
⊢ (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖) |
| 72 | | elfzle2 12345 |
. . . . . . . 8
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ≤ 𝑀) |
| 73 | | 0zd 11389 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑀) → 0 ∈ ℤ) |
| 74 | | elfzel2 12340 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ) |
| 75 | | elfz 12332 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (𝑖 ∈
(0...𝑀) ↔ (0 ≤
𝑖 ∧ 𝑖 ≤ 𝑀))) |
| 76 | 64, 73, 74, 75 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝑖 ∈ (1...𝑀) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖 ∧ 𝑖 ≤ 𝑀))) |
| 77 | 71, 72, 76 | mpbir2and 957 |
. . . . . . 7
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (0...𝑀)) |
| 78 | 77 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 79 | 62, 78 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 80 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ) |
| 81 | | 0red 10041 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 0 ∈
ℝ) |
| 82 | | elfzelz 12342 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℤ) |
| 83 | 82 | zred 11482 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℝ) |
| 84 | | 1red 10055 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 1 ∈
ℝ) |
| 85 | 67 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 0 <
1) |
| 86 | | elfzle1 12344 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 1 ≤ 𝑖) |
| 87 | 81, 84, 83, 85, 86 | ltletrd 10197 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 𝑖) |
| 88 | 81, 83, 87 | ltled 10185 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 0 ≤ 𝑖) |
| 89 | 88 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ 𝑖) |
| 90 | 83 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℝ) |
| 91 | 15 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ) |
| 92 | | peano2rem 10348 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈
ℝ) |
| 93 | 91, 92 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ) |
| 94 | | elfzle2 12345 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ≤ (𝑀 − 1)) |
| 95 | 94 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ≤ (𝑀 − 1)) |
| 96 | 91 | ltm1d 10956 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) < 𝑀) |
| 97 | 90, 93, 91, 95, 96 | lelttrd 10195 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 < 𝑀) |
| 98 | 90, 91, 97 | ltled 10185 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ≤ 𝑀) |
| 99 | 82 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℤ) |
| 100 | | 0zd 11389 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈
ℤ) |
| 101 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ) |
| 102 | 99, 100, 101, 75 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖 ∧ 𝑖 ≤ 𝑀))) |
| 103 | 89, 98, 102 | mpbir2and 957 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0...𝑀)) |
| 104 | 80, 103 | ffvelrnd 6360 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘𝑖) ∈ ℝ) |
| 105 | | 0red 10041 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈
ℝ) |
| 106 | | peano2re 10209 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℝ → (𝑖 + 1) ∈
ℝ) |
| 107 | 90, 106 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℝ) |
| 108 | | 1red 10055 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 1 ∈
ℝ) |
| 109 | 67 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 0 <
1) |
| 110 | 83, 106 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → (𝑖 + 1) ∈ ℝ) |
| 111 | 83 | ltp1d 10954 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 < (𝑖 + 1)) |
| 112 | 84, 83, 110, 86, 111 | lelttrd 10195 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 1 < (𝑖 + 1)) |
| 113 | 112 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 1 < (𝑖 + 1)) |
| 114 | 105, 108,
107, 109, 113 | lttrd 10198 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 0 < (𝑖 + 1)) |
| 115 | 105, 107,
114 | ltled 10185 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ (𝑖 + 1)) |
| 116 | 90, 93, 108, 95 | leadd1dd 10641 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ ((𝑀 − 1) + 1)) |
| 117 | 2 | nncnd 11036 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 118 | | 1cnd 10056 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℂ) |
| 119 | 117, 118 | npcand 10396 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 − 1) + 1) = 𝑀) |
| 120 | 119 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀) |
| 121 | 116, 120 | breqtrd 4679 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ 𝑀) |
| 122 | 99 | peano2zd 11485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℤ) |
| 123 | | elfz 12332 |
. . . . . . . . 9
⊢ (((𝑖 + 1) ∈ ℤ ∧ 0
∈ ℤ ∧ 𝑀
∈ ℤ) → ((𝑖
+ 1) ∈ (0...𝑀) ↔
(0 ≤ (𝑖 + 1) ∧
(𝑖 + 1) ≤ 𝑀))) |
| 124 | 122, 100,
101, 123 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ((𝑖 + 1) ∈ (0...𝑀) ↔ (0 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ 𝑀))) |
| 125 | 115, 121,
124 | mpbir2and 957 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ (0...𝑀)) |
| 126 | 80, 125 | ffvelrnd 6360 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 127 | | elfzo 12472 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (𝑖 ∈
(0..^𝑀) ↔ (0 ≤
𝑖 ∧ 𝑖 < 𝑀))) |
| 128 | 99, 100, 101, 127 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖 ∧ 𝑖 < 𝑀))) |
| 129 | 89, 97, 128 | mpbir2and 957 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀)) |
| 130 | 129, 52 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 131 | 104, 126,
130 | ltled 10185 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘𝑖) ≤ (𝑄‘(𝑖 + 1))) |
| 132 | 61, 79, 131 | monoord 12831 |
. . . 4
⊢ (𝜑 → (𝑄‘1) ≤ (𝑄‘𝑀)) |
| 133 | 132, 25 | breqtrd 4679 |
. . 3
⊢ (𝜑 → (𝑄‘1) ≤ 𝐵) |
| 134 | 24, 39, 31, 59, 133 | ltletrd 10197 |
. 2
⊢ (𝜑 → 𝐴 < 𝐵) |
| 135 | 24, 31, 134 | 3jca 1242 |
1
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |