| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem69.f |
. . . 4
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 2 | | fourierdlem69.q |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 3 | | fourierdlem69.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4 | | fourierdlem69.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 5 | 4 | fourierdlem2 40326 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 6 | 3, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 7 | 2, 6 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 8 | 7 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
| 9 | 8 | simpld 475 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
| 10 | 9 | simpld 475 |
. . . . . 6
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
| 11 | 9 | simprd 479 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
| 12 | 10, 11 | oveq12d 6668 |
. . . . 5
⊢ (𝜑 → ((𝑄‘0)[,](𝑄‘𝑀)) = (𝐴[,]𝐵)) |
| 13 | 12 | feq2d 6031 |
. . . 4
⊢ (𝜑 → (𝐹:((𝑄‘0)[,](𝑄‘𝑀))⟶ℂ ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ)) |
| 14 | 1, 13 | mpbird 247 |
. . 3
⊢ (𝜑 → 𝐹:((𝑄‘0)[,](𝑄‘𝑀))⟶ℂ) |
| 15 | 14 | feqmptd 6249 |
. 2
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀)) ↦ (𝐹‘𝑥))) |
| 16 | | nfv 1843 |
. . 3
⊢
Ⅎ𝑥𝜑 |
| 17 | | 0zd 11389 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
| 18 | | nnuz 11723 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 19 | | 1e0p1 11552 |
. . . . . 6
⊢ 1 = (0 +
1) |
| 20 | 19 | fveq2i 6194 |
. . . . 5
⊢
(ℤ≥‘1) = (ℤ≥‘(0 +
1)) |
| 21 | 18, 20 | eqtri 2644 |
. . . 4
⊢ ℕ =
(ℤ≥‘(0 + 1)) |
| 22 | 3, 21 | syl6eleq 2711 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(0 +
1))) |
| 23 | 7 | simpld 475 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑𝑚
(0...𝑀))) |
| 24 | | elmapi 7879 |
. . . . 5
⊢ (𝑄 ∈ (ℝ
↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 26 | 25 | ffvelrnda 6359 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 27 | 8 | simprd 479 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 28 | 27 | r19.21bi 2932 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 29 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 30 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
| 31 | 10 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → (𝑄‘0) = 𝐴) |
| 32 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → (𝑄‘𝑀) = 𝐵) |
| 33 | 31, 32 | oveq12d 6668 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → ((𝑄‘0)[,](𝑄‘𝑀)) = (𝐴[,]𝐵)) |
| 34 | 30, 33 | eleqtrd 2703 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 35 | 29, 34 | ffvelrnd 6360 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → (𝐹‘𝑥) ∈ ℂ) |
| 36 | 25 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 37 | | elfzofz 12485 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
| 38 | 37 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 39 | 36, 38 | ffvelrnd 6360 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 40 | | fzofzp1 12565 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
| 41 | 40 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
| 42 | 36, 41 | ffvelrnd 6360 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 43 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 44 | | ioossicc 12259 |
. . . . . . . 8
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
| 45 | 4, 3, 2 | fourierdlem11 40335 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
| 46 | 45 | simp1d 1073 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 47 | 46 | rexrd 10089 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 48 | 47 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈
ℝ*) |
| 49 | 45 | simp2d 1074 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 50 | 49 | rexrd 10089 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 51 | 50 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐵 ∈
ℝ*) |
| 52 | 4, 3, 2 | fourierdlem15 40339 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
| 53 | 52 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
| 54 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
| 55 | 48, 51, 53, 54 | fourierdlem8 40332 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) |
| 56 | 44, 55 | syl5ss 3614 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) |
| 57 | 43, 56 | feqresmpt 6250 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
| 58 | | fourierdlem69.fcn |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 59 | 57, 58 | eqeltrrd 2702 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 60 | | fourierdlem69.l |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 61 | 57 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑄‘(𝑖 + 1)))) |
| 62 | 60, 61 | eleqtrd 2703 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑄‘(𝑖 + 1)))) |
| 63 | | fourierdlem69.r |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 64 | 57 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑄‘𝑖))) |
| 65 | 63, 64 | eleqtrd 2703 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑄‘𝑖))) |
| 66 | 39, 42, 59, 62, 65 | iblcncfioo 40194 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
| 67 | 43 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 68 | 55 | sselda 3603 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 69 | 67, 68 | ffvelrnd 6360 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹‘𝑥) ∈ ℂ) |
| 70 | 39, 42, 66, 69 | ibliooicc 40187 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
| 71 | 16, 17, 22, 26, 28, 35, 70 | iblspltprt 40189 |
. 2
⊢ (𝜑 → (𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀)) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
| 72 | 15, 71 | eqeltrd 2701 |
1
⊢ (𝜑 → 𝐹 ∈
𝐿1) |