MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonic Structured version   Visualization version   GIF version

Theorem harmonic 14591
Description: The harmonic series 𝐻 diverges. This fact follows from the stronger emcl 24729, which establishes that the harmonic series grows as log𝑛 + γ + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
harmonic.1 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
harmonic.2 𝐻 = seq1( + , 𝐹)
Assertion
Ref Expression
harmonic ¬ 𝐻 ∈ dom ⇝

Proof of Theorem harmonic
Dummy variables 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . . . 4 0 = (ℤ‘0)
2 0zd 11389 . . . 4 (𝐻 ∈ dom ⇝ → 0 ∈ ℤ)
3 1ex 10035 . . . . . 6 1 ∈ V
43fvconst2 6469 . . . . 5 (𝑘 ∈ ℕ0 → ((ℕ0 × {1})‘𝑘) = 1)
54adantl 482 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {1})‘𝑘) = 1)
6 1red 10055 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
7 harmonic.2 . . . . . . 7 𝐻 = seq1( + , 𝐹)
87eleq1i 2692 . . . . . 6 (𝐻 ∈ dom ⇝ ↔ seq1( + , 𝐹) ∈ dom ⇝ )
98biimpi 206 . . . . 5 (𝐻 ∈ dom ⇝ → seq1( + , 𝐹) ∈ dom ⇝ )
10 oveq2 6658 . . . . . . . . 9 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
11 harmonic.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
12 ovex 6678 . . . . . . . . 9 (1 / 𝑘) ∈ V
1310, 11, 12fvmpt 6282 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 / 𝑘))
14 nnrecre 11057 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1513, 14eqeltrd 2701 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
1615adantl 482 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
17 nnrp 11842 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1817rpreccld 11882 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
1918rpge0d 11876 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ (1 / 𝑘))
2019, 13breqtrrd 4681 . . . . . . 7 (𝑘 ∈ ℕ → 0 ≤ (𝐹𝑘))
2120adantl 482 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
22 nnre 11027 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2322lep1d 10955 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1))
24 nngt0 11049 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < 𝑘)
25 peano2re 10209 . . . . . . . . . . 11 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
2622, 25syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℝ)
27 peano2nn 11032 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
2827nngt0d 11064 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < (𝑘 + 1))
29 lerec 10906 . . . . . . . . . 10 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
3022, 24, 26, 28, 29syl22anc 1327 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
3123, 30mpbid 222 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / (𝑘 + 1)) ≤ (1 / 𝑘))
32 oveq2 6658 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
33 ovex 6678 . . . . . . . . . 10 (1 / (𝑘 + 1)) ∈ V
3432, 11, 33fvmpt 6282 . . . . . . . . 9 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
3527, 34syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
3631, 35, 133brtr4d 4685 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
3736adantl 482 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
38 oveq2 6658 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
3938fveq2d 6195 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐹‘(2↑𝑘)) = (𝐹‘(2↑𝑗)))
4038, 39oveq12d 6668 . . . . . . . 8 (𝑘 = 𝑗 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
41 fconstmpt 5163 . . . . . . . . 9 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ 1)
42 2nn 11185 . . . . . . . . . . . . . 14 2 ∈ ℕ
43 nnexpcl 12873 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
4442, 43mpan 706 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℕ)
45 oveq2 6658 . . . . . . . . . . . . . 14 (𝑛 = (2↑𝑘) → (1 / 𝑛) = (1 / (2↑𝑘)))
46 ovex 6678 . . . . . . . . . . . . . 14 (1 / (2↑𝑘)) ∈ V
4745, 11, 46fvmpt 6282 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘)))
4844, 47syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘)))
4948oveq2d 6666 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑘) · (1 / (2↑𝑘))))
50 nncn 11028 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (2↑𝑘) ∈ ℂ)
51 nnne0 11053 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (2↑𝑘) ≠ 0)
5250, 51recidd 10796 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℕ → ((2↑𝑘) · (1 / (2↑𝑘))) = 1)
5344, 52syl 17 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (1 / (2↑𝑘))) = 1)
5449, 53eqtrd 2656 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = 1)
5554mpteq2ia 4740 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((2↑𝑘) · (𝐹‘(2↑𝑘)))) = (𝑘 ∈ ℕ0 ↦ 1)
5641, 55eqtr4i 2647 . . . . . . . 8 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ ((2↑𝑘) · (𝐹‘(2↑𝑘))))
57 ovex 6678 . . . . . . . 8 ((2↑𝑗) · (𝐹‘(2↑𝑗))) ∈ V
5840, 56, 57fvmpt 6282 . . . . . . 7 (𝑗 ∈ ℕ0 → ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
5958adantl 482 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ0) → ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
6016, 21, 37, 59climcnds 14583 . . . . 5 (𝐻 ∈ dom ⇝ → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , (ℕ0 × {1})) ∈ dom ⇝ ))
619, 60mpbid 222 . . . 4 (𝐻 ∈ dom ⇝ → seq0( + , (ℕ0 × {1})) ∈ dom ⇝ )
621, 2, 5, 6, 61isumrecl 14496 . . 3 (𝐻 ∈ dom ⇝ → Σ𝑘 ∈ ℕ0 1 ∈ ℝ)
63 arch 11289 . . 3 𝑘 ∈ ℕ0 1 ∈ ℝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
6462, 63syl 17 . 2 (𝐻 ∈ dom ⇝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
65 fzfid 12772 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1...𝑗) ∈ Fin)
66 ax-1cn 9994 . . . . . . 7 1 ∈ ℂ
67 fsumconst 14522 . . . . . . 7 (((1...𝑗) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑗)1 = ((#‘(1...𝑗)) · 1))
6865, 66, 67sylancl 694 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 = ((#‘(1...𝑗)) · 1))
69 nnnn0 11299 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
7069adantl 482 . . . . . . . 8 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
71 hashfz1 13134 . . . . . . . 8 (𝑗 ∈ ℕ0 → (#‘(1...𝑗)) = 𝑗)
7270, 71syl 17 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (#‘(1...𝑗)) = 𝑗)
7372oveq1d 6665 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ((#‘(1...𝑗)) · 1) = (𝑗 · 1))
74 nncn 11028 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
7574adantl 482 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
7675mulid1d 10057 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 · 1) = 𝑗)
7768, 73, 763eqtrd 2660 . . . . 5 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 = 𝑗)
78 0zd 11389 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ∈ ℤ)
79 elfznn 12370 . . . . . . . . 9 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ)
80 nnnn0 11299 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
8179, 80syl 17 . . . . . . . 8 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ0)
8281ssriv 3607 . . . . . . 7 (1...𝑗) ⊆ ℕ0
8382a1i 11 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1...𝑗) ⊆ ℕ0)
844adantl 482 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {1})‘𝑘) = 1)
85 1red 10055 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
86 0le1 10551 . . . . . . 7 0 ≤ 1
8786a1i 11 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 1)
8861adantr 481 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → seq0( + , (ℕ0 × {1})) ∈ dom ⇝ )
891, 78, 65, 83, 84, 85, 87, 88isumless 14577 . . . . 5 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 ≤ Σ𝑘 ∈ ℕ0 1)
9077, 89eqbrtrrd 4677 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ≤ Σ𝑘 ∈ ℕ0 1)
91 nnre 11027 . . . . 5 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
92 lenlt 10116 . . . . 5 ((𝑗 ∈ ℝ ∧ Σ𝑘 ∈ ℕ0 1 ∈ ℝ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗))
9391, 62, 92syl2anr 495 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗))
9490, 93mpbid 222 . . 3 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗)
9594nrexdv 3001 . 2 (𝐻 ∈ dom ⇝ → ¬ ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
9664, 95pm2.65i 185 1 ¬ 𝐻 ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  ...cfz 12326  seqcseq 12801  cexp 12860  #chash 13117  cli 14215  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator