MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonic Structured version   Visualization version   Unicode version

Theorem harmonic 14591
Description: The harmonic series  H diverges. This fact follows from the stronger emcl 24729, which establishes that the harmonic series grows as  log n  +  gamma  + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
harmonic.1  |-  F  =  ( n  e.  NN  |->  ( 1  /  n
) )
harmonic.2  |-  H  =  seq 1 (  +  ,  F )
Assertion
Ref Expression
harmonic  |-  -.  H  e.  dom  ~~>

Proof of Theorem harmonic
Dummy variables  k 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 11389 . . . 4  |-  ( H  e.  dom  ~~>  ->  0  e.  ZZ )
3 1ex 10035 . . . . . 6  |-  1  e.  _V
43fvconst2 6469 . . . . 5  |-  ( k  e.  NN0  ->  ( ( NN0  X.  { 1 } ) `  k
)  =  1 )
54adantl 482 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN0 )  ->  (
( NN0  X.  { 1 } ) `  k
)  =  1 )
6 1red 10055 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN0 )  ->  1  e.  RR )
7 harmonic.2 . . . . . . 7  |-  H  =  seq 1 (  +  ,  F )
87eleq1i 2692 . . . . . 6  |-  ( H  e.  dom  ~~>  <->  seq 1
(  +  ,  F
)  e.  dom  ~~>  )
98biimpi 206 . . . . 5  |-  ( H  e.  dom  ~~>  ->  seq 1 (  +  ,  F )  e.  dom  ~~>  )
10 oveq2 6658 . . . . . . . . 9  |-  ( n  =  k  ->  (
1  /  n )  =  ( 1  / 
k ) )
11 harmonic.1 . . . . . . . . 9  |-  F  =  ( n  e.  NN  |->  ( 1  /  n
) )
12 ovex 6678 . . . . . . . . 9  |-  ( 1  /  k )  e. 
_V
1310, 11, 12fvmpt 6282 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 1  / 
k ) )
14 nnrecre 11057 . . . . . . . 8  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
1513, 14eqeltrd 2701 . . . . . . 7  |-  ( k  e.  NN  ->  ( F `  k )  e.  RR )
1615adantl 482 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
17 nnrp 11842 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR+ )
1817rpreccld 11882 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR+ )
1918rpge0d 11876 . . . . . . . 8  |-  ( k  e.  NN  ->  0  <_  ( 1  /  k
) )
2019, 13breqtrrd 4681 . . . . . . 7  |-  ( k  e.  NN  ->  0  <_  ( F `  k
) )
2120adantl 482 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN )  ->  0  <_  ( F `  k
) )
22 nnre 11027 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR )
2322lep1d 10955 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  <_  ( k  +  1 ) )
24 nngt0 11049 . . . . . . . . . 10  |-  ( k  e.  NN  ->  0  <  k )
25 peano2re 10209 . . . . . . . . . . 11  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
2622, 25syl 17 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  RR )
27 peano2nn 11032 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
2827nngt0d 11064 . . . . . . . . . 10  |-  ( k  e.  NN  ->  0  <  ( k  +  1 ) )
29 lerec 10906 . . . . . . . . . 10  |-  ( ( ( k  e.  RR  /\  0  <  k )  /\  ( ( k  +  1 )  e.  RR  /\  0  < 
( k  +  1 ) ) )  -> 
( k  <_  (
k  +  1 )  <-> 
( 1  /  (
k  +  1 ) )  <_  ( 1  /  k ) ) )
3022, 24, 26, 28, 29syl22anc 1327 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  <_  ( k  +  1 )  <->  ( 1  /  ( k  +  1 ) )  <_ 
( 1  /  k
) ) )
3123, 30mpbid 222 . . . . . . . 8  |-  ( k  e.  NN  ->  (
1  /  ( k  +  1 ) )  <_  ( 1  / 
k ) )
32 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  ( k  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( k  +  1 ) ) )
33 ovex 6678 . . . . . . . . . 10  |-  ( 1  /  ( k  +  1 ) )  e. 
_V
3432, 11, 33fvmpt 6282 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  NN  ->  ( F `  ( k  +  1 ) )  =  ( 1  / 
( k  +  1 ) ) )
3527, 34syl 17 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  =  ( 1  / 
( k  +  1 ) ) )
3631, 35, 133brtr4d 4685 . . . . . . 7  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
3736adantl 482 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
38 oveq2 6658 . . . . . . . . 9  |-  ( k  =  j  ->  (
2 ^ k )  =  ( 2 ^ j ) )
3938fveq2d 6195 . . . . . . . . 9  |-  ( k  =  j  ->  ( F `  ( 2 ^ k ) )  =  ( F `  ( 2 ^ j
) ) )
4038, 39oveq12d 6668 . . . . . . . 8  |-  ( k  =  j  ->  (
( 2 ^ k
)  x.  ( F `
 ( 2 ^ k ) ) )  =  ( ( 2 ^ j )  x.  ( F `  (
2 ^ j ) ) ) )
41 fconstmpt 5163 . . . . . . . . 9  |-  ( NN0 
X.  { 1 } )  =  ( k  e.  NN0  |->  1 )
42 2nn 11185 . . . . . . . . . . . . . 14  |-  2  e.  NN
43 nnexpcl 12873 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
4442, 43mpan 706 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 2 ^ k )  e.  NN )
45 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( n  =  ( 2 ^ k )  ->  (
1  /  n )  =  ( 1  / 
( 2 ^ k
) ) )
46 ovex 6678 . . . . . . . . . . . . . 14  |-  ( 1  /  ( 2 ^ k ) )  e. 
_V
4745, 11, 46fvmpt 6282 . . . . . . . . . . . . 13  |-  ( ( 2 ^ k )  e.  NN  ->  ( F `  ( 2 ^ k ) )  =  ( 1  / 
( 2 ^ k
) ) )
4844, 47syl 17 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( F `
 ( 2 ^ k ) )  =  ( 1  /  (
2 ^ k ) ) )
4948oveq2d 6666 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) )  =  ( ( 2 ^ k )  x.  (
1  /  ( 2 ^ k ) ) ) )
50 nncn 11028 . . . . . . . . . . . . 13  |-  ( ( 2 ^ k )  e.  NN  ->  (
2 ^ k )  e.  CC )
51 nnne0 11053 . . . . . . . . . . . . 13  |-  ( ( 2 ^ k )  e.  NN  ->  (
2 ^ k )  =/=  0 )
5250, 51recidd 10796 . . . . . . . . . . . 12  |-  ( ( 2 ^ k )  e.  NN  ->  (
( 2 ^ k
)  x.  ( 1  /  ( 2 ^ k ) ) )  =  1 )
5344, 52syl 17 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  x.  ( 1  / 
( 2 ^ k
) ) )  =  1 )
5449, 53eqtrd 2656 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) )  =  1 )
5554mpteq2ia 4740 . . . . . . . . 9  |-  ( k  e.  NN0  |->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) ) )  =  ( k  e. 
NN0  |->  1 )
5641, 55eqtr4i 2647 . . . . . . . 8  |-  ( NN0 
X.  { 1 } )  =  ( k  e.  NN0  |->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) ) )
57 ovex 6678 . . . . . . . 8  |-  ( ( 2 ^ j )  x.  ( F `  ( 2 ^ j
) ) )  e. 
_V
5840, 56, 57fvmpt 6282 . . . . . . 7  |-  ( j  e.  NN0  ->  ( ( NN0  X.  { 1 } ) `  j
)  =  ( ( 2 ^ j )  x.  ( F `  ( 2 ^ j
) ) ) )
5958adantl 482 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN0 )  ->  (
( NN0  X.  { 1 } ) `  j
)  =  ( ( 2 ^ j )  x.  ( F `  ( 2 ^ j
) ) ) )
6016, 21, 37, 59climcnds 14583 . . . . 5  |-  ( H  e.  dom  ~~>  ->  (  seq 1 (  +  ,  F )  e.  dom  ~~>  <->  seq 0 (  +  , 
( NN0  X.  { 1 } ) )  e. 
dom 
~~>  ) )
619, 60mpbid 222 . . . 4  |-  ( H  e.  dom  ~~>  ->  seq 0 (  +  , 
( NN0  X.  { 1 } ) )  e. 
dom 
~~>  )
621, 2, 5, 6, 61isumrecl 14496 . . 3  |-  ( H  e.  dom  ~~>  ->  sum_ k  e.  NN0  1  e.  RR )
63 arch 11289 . . 3  |-  ( sum_ k  e.  NN0  1  e.  RR  ->  E. j  e.  NN  sum_ k  e.  NN0  1  <  j )
6462, 63syl 17 . 2  |-  ( H  e.  dom  ~~>  ->  E. j  e.  NN  sum_ k  e.  NN0  1  <  j )
65 fzfid 12772 . . . . . . 7  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
1 ... j )  e. 
Fin )
66 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
67 fsumconst 14522 . . . . . . 7  |-  ( ( ( 1 ... j
)  e.  Fin  /\  1  e.  CC )  -> 
sum_ k  e.  ( 1 ... j ) 1  =  ( (
# `  ( 1 ... j ) )  x.  1 ) )
6865, 66, 67sylancl 694 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  sum_ k  e.  ( 1 ... j
) 1  =  ( ( # `  (
1 ... j ) )  x.  1 ) )
69 nnnn0 11299 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  NN0 )
7069adantl 482 . . . . . . . 8  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  j  e.  NN0 )
71 hashfz1 13134 . . . . . . . 8  |-  ( j  e.  NN0  ->  ( # `  ( 1 ... j
) )  =  j )
7270, 71syl 17 . . . . . . 7  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  ( # `
 ( 1 ... j ) )  =  j )
7372oveq1d 6665 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
( # `  ( 1 ... j ) )  x.  1 )  =  ( j  x.  1 ) )
74 nncn 11028 . . . . . . . 8  |-  ( j  e.  NN  ->  j  e.  CC )
7574adantl 482 . . . . . . 7  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  j  e.  CC )
7675mulid1d 10057 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
j  x.  1 )  =  j )
7768, 73, 763eqtrd 2660 . . . . 5  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  sum_ k  e.  ( 1 ... j
) 1  =  j )
78 0zd 11389 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  0  e.  ZZ )
79 elfznn 12370 . . . . . . . . 9  |-  ( k  e.  ( 1 ... j )  ->  k  e.  NN )
80 nnnn0 11299 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
8179, 80syl 17 . . . . . . . 8  |-  ( k  e.  ( 1 ... j )  ->  k  e.  NN0 )
8281ssriv 3607 . . . . . . 7  |-  ( 1 ... j )  C_  NN0
8382a1i 11 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
1 ... j )  C_  NN0 )
844adantl 482 . . . . . 6  |-  ( ( ( H  e.  dom  ~~>  /\  j  e.  NN )  /\  k  e.  NN0 )  ->  ( ( NN0 
X.  { 1 } ) `  k )  =  1 )
85 1red 10055 . . . . . 6  |-  ( ( ( H  e.  dom  ~~>  /\  j  e.  NN )  /\  k  e.  NN0 )  ->  1  e.  RR )
86 0le1 10551 . . . . . . 7  |-  0  <_  1
8786a1i 11 . . . . . 6  |-  ( ( ( H  e.  dom  ~~>  /\  j  e.  NN )  /\  k  e.  NN0 )  ->  0  <_  1
)
8861adantr 481 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  seq 0 (  +  , 
( NN0  X.  { 1 } ) )  e. 
dom 
~~>  )
891, 78, 65, 83, 84, 85, 87, 88isumless 14577 . . . . 5  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  sum_ k  e.  ( 1 ... j
) 1  <_  sum_ k  e.  NN0  1 )
9077, 89eqbrtrrd 4677 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  j  <_ 
sum_ k  e.  NN0  1 )
91 nnre 11027 . . . . 5  |-  ( j  e.  NN  ->  j  e.  RR )
92 lenlt 10116 . . . . 5  |-  ( ( j  e.  RR  /\  sum_ k  e.  NN0  1  e.  RR )  ->  (
j  <_  sum_ k  e. 
NN0  1  <->  -.  sum_ k  e.  NN0  1  <  j
) )
9391, 62, 92syl2anr 495 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
j  <_  sum_ k  e. 
NN0  1  <->  -.  sum_ k  e.  NN0  1  <  j
) )
9490, 93mpbid 222 . . 3  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  -.  sum_ k  e.  NN0  1  <  j )
9594nrexdv 3001 . 2  |-  ( H  e.  dom  ~~>  ->  -.  E. j  e.  NN  sum_ k  e.  NN0  1  < 
j )
9664, 95pm2.65i 185 1  |-  -.  H  e.  dom  ~~>
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ...cfz 12326    seqcseq 12801   ^cexp 12860   #chash 13117    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator