| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . . . . . . 9
⊢ ((((
deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)) → 𝑦 = ((coe1‘𝑗)‘𝑥)) |
| 2 | 1 | reximi 3011 |
. . . . . . . 8
⊢
(∃𝑗 ∈
𝐼 ((( deg1
‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)) → ∃𝑗 ∈ 𝐼 𝑦 = ((coe1‘𝑗)‘𝑥)) |
| 3 | 2 | ss2abi 3674 |
. . . . . . 7
⊢ {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ⊆ {𝑦 ∣ ∃𝑗 ∈ 𝐼 𝑦 = ((coe1‘𝑗)‘𝑥)} |
| 4 | | abrexexg 7140 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑈 → {𝑦 ∣ ∃𝑗 ∈ 𝐼 𝑦 = ((coe1‘𝑗)‘𝑥)} ∈ V) |
| 5 | | ssexg 4804 |
. . . . . . 7
⊢ (({𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ⊆ {𝑦 ∣ ∃𝑗 ∈ 𝐼 𝑦 = ((coe1‘𝑗)‘𝑥)} ∧ {𝑦 ∣ ∃𝑗 ∈ 𝐼 𝑦 = ((coe1‘𝑗)‘𝑥)} ∈ V) → {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ∈ V) |
| 6 | 3, 4, 5 | sylancr 695 |
. . . . . 6
⊢ (𝐼 ∈ 𝑈 → {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ∈ V) |
| 7 | 6 | ralrimivw 2967 |
. . . . 5
⊢ (𝐼 ∈ 𝑈 → ∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ∈ V) |
| 8 | 7 | adantl 482 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ∈ V) |
| 9 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ ℕ0
↦ {𝑦 ∣
∃𝑗 ∈ 𝐼 ((( deg1
‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) |
| 10 | 9 | fnmpt 6020 |
. . . 4
⊢
(∀𝑥 ∈
ℕ0 {𝑦
∣ ∃𝑗 ∈
𝐼 ((( deg1
‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ∈ V → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) Fn ℕ0) |
| 11 | 8, 10 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) Fn ℕ0) |
| 12 | | hbtlem.s |
. . . . . . 7
⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
| 13 | | elex 3212 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) |
| 14 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
| 15 | | hbtlem.p |
. . . . . . . . . . . . 13
⊢ 𝑃 = (Poly1‘𝑅) |
| 16 | 14, 15 | syl6eqr 2674 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) = 𝑃) |
| 17 | 16 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 →
(LIdeal‘(Poly1‘𝑟)) = (LIdeal‘𝑃)) |
| 18 | | hbtlem.u |
. . . . . . . . . . 11
⊢ 𝑈 = (LIdeal‘𝑃) |
| 19 | 17, 18 | syl6eqr 2674 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 →
(LIdeal‘(Poly1‘𝑟)) = 𝑈) |
| 20 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑅 → ( deg1 ‘𝑟) = ( deg1
‘𝑅)) |
| 21 | 20 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑅 → (( deg1 ‘𝑟)‘𝑗) = (( deg1 ‘𝑅)‘𝑗)) |
| 22 | 21 | breq1d 4663 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑅 → ((( deg1 ‘𝑟)‘𝑗) ≤ 𝑥 ↔ (( deg1 ‘𝑅)‘𝑗) ≤ 𝑥)) |
| 23 | 22 | anbi1d 741 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → (((( deg1 ‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)) ↔ ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)))) |
| 24 | 23 | rexbidv 3052 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)) ↔ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)))) |
| 25 | 24 | abbidv 2741 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} = {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) |
| 26 | 25 | mpteq2dv 4745 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) |
| 27 | 19, 26 | mpteq12dv 4733 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))) |
| 28 | | df-ldgis 37692 |
. . . . . . . . 9
⊢ ldgIdlSeq
= (𝑟 ∈ V ↦
(𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))) |
| 29 | | fvex 6201 |
. . . . . . . . . . 11
⊢
(LIdeal‘𝑃)
∈ V |
| 30 | 18, 29 | eqeltri 2697 |
. . . . . . . . . 10
⊢ 𝑈 ∈ V |
| 31 | 30 | mptex 6486 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) ∈ V |
| 32 | 27, 28, 31 | fvmpt 6282 |
. . . . . . . 8
⊢ (𝑅 ∈ V →
(ldgIdlSeq‘𝑅) =
(𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))) |
| 33 | 13, 32 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(ldgIdlSeq‘𝑅) =
(𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))) |
| 34 | 12, 33 | syl5eq 2668 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑆 = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))) |
| 35 | 34 | fveq1d 6193 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑆‘𝐼) = ((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))‘𝐼)) |
| 36 | | rexeq 3139 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → (∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)) ↔ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)))) |
| 37 | 36 | abbidv 2741 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} = {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) |
| 38 | 37 | mpteq2dv 4745 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) |
| 39 | | eqid 2622 |
. . . . . 6
⊢ (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) |
| 40 | | nn0ex 11298 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 41 | 40 | mptex 6486 |
. . . . . 6
⊢ (𝑥 ∈ ℕ0
↦ {𝑦 ∣
∃𝑗 ∈ 𝐼 ((( deg1
‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) ∈ V |
| 42 | 38, 39, 41 | fvmpt 6282 |
. . . . 5
⊢ (𝐼 ∈ 𝑈 → ((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) |
| 43 | 35, 42 | sylan9eq 2676 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑆‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) |
| 44 | 43 | fneq1d 5981 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑆‘𝐼) Fn ℕ0 ↔ (𝑥 ∈ ℕ0
↦ {𝑦 ∣
∃𝑗 ∈ 𝐼 ((( deg1
‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) Fn
ℕ0)) |
| 45 | 11, 44 | mpbird 247 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑆‘𝐼) Fn ℕ0) |
| 46 | | hbtlem7.t |
. . . . 5
⊢ 𝑇 = (LIdeal‘𝑅) |
| 47 | 15, 18, 12, 46 | hbtlem2 37694 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑥) ∈ 𝑇) |
| 48 | 47 | 3expa 1265 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑥) ∈ 𝑇) |
| 49 | 48 | ralrimiva 2966 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ ℕ0 ((𝑆‘𝐼)‘𝑥) ∈ 𝑇) |
| 50 | | ffnfv 6388 |
. 2
⊢ ((𝑆‘𝐼):ℕ0⟶𝑇 ↔ ((𝑆‘𝐼) Fn ℕ0 ∧ ∀𝑥 ∈ ℕ0
((𝑆‘𝐼)‘𝑥) ∈ 𝑇)) |
| 51 | 45, 49, 50 | sylanbrc 698 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑆‘𝐼):ℕ0⟶𝑇) |